ホスホフルクトキナーゼ
Wikipedia preview
出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2016/10/18 02:08:20」(JST)
[Wiki en表示]
For the Polish hip-hop group, see Paktofonika.
Phosphofructokinase |
Identifiers |
Symbol |
Ppfruckinase |
Pfam |
PF00365 |
InterPro |
IPR000023 |
PROSITE |
PDOC00336 |
Available protein structures: |
Pfam |
structures |
PDB |
RCSB PDB; PDBe; PDBj |
PDBsum |
structure summary |
|
Phosphofructokinase is a kinase enzyme that phosphorylates fructose 6-phosphate in glycolysis.
The enzyme-catalysed transfer of a phosphoryl group from ATP is an important reaction in a wide variety of biological processes.[1] One enzyme that utilizes this reaction is phosphofructokinase (PFK), which catalyses the phosphorylation of fructose-6-phosphate to fructose-1,6- bisphosphate, a key regulatory step in the glycolytic pathway.[2][3] It is allosterically inhibited by ATP and allosterically activated by AMP, thus indicating the cell's energetic needs when it undergoes the glycolytic pathway.[4] PFK exists as a homotetramer in bacteria and mammals (where each monomer possesses 2 similar domains) and as an octomer in yeast (where there are 4 alpha- (PFK1) and 4 beta-chains (PFK2), the latter, like the mammalian monomers, possessing 2 similar domains[3]). This protein may use the morpheein model of allosteric regulation.[5]
PFK is about 300 amino acids in length, and structural studies of the bacterial enzyme have shown it comprises two similar (alpha/beta) lobes: one involved in ATP binding and the other housing both the substrate-binding site and the allosteric site (a regulatory binding site distinct from the active site, but that affects enzyme activity). The identical tetramer subunits adopt 2 different conformations: in a 'closed' state, the bound magnesium ion bridges the phosphoryl groups of the enzyme products (ADP and fructose-1,6- bisphosphate); and in an 'open' state, the magnesium ion binds only the ADP,[6] as the 2 products are now further apart. These conformations are thought to be successive stages of a reaction pathway that requires subunit closure to bring the 2 molecules sufficiently close to react.[6]
Deficiency in PFK leads to glycogenosis type VII (Tarui's disease), an autosomal recessive disorder characterised by severe nausea, vomiting, muscle cramps and myoglobinuria in response to bursts of intense or vigorous exercise.[3] Sufferers are usually able to lead a reasonably ordinary life by learning to adjust activity levels.[3]
Contents
- 1 Regulation
- 2 See also
- 3 References
- 4 External links
Regulation
Further information: Glycolysis § Phosphofructokinase
There are two types of the enzyme:
Type |
Synonyms |
EC number |
Substrate |
Product |
Subunit genes |
Phosphofructokinase 1 |
6-phosphofructokinase
phosphohexokinase |
EC 2.7.1.11 |
Fructose 6-phosphate |
Fructose-1,6-bisphosphate |
PFKL, PFKM, PFKP |
Phosphofructokinase 2 |
6-phosphofructo-2-kinase |
EC 2.7.1.105 |
Fructose-2,6-bisphosphate |
PFKFB1, PFKFB2, PFKFB3, PFKFB4 |
See also
- Phosphofructokinase deficiency
References
- ^ Evans PR, Hellinga HW (1987). "Mutations in the active site of Escherichia coli phosphofructokinase". Nature. 327 (6121): 437–439. doi:10.1038/327437a0. PMID 2953977.
- ^ Wegener G, Krause U (2002). "Different modes of activating phosphofructokinase, a key regulatory enzyme of glycolysis, in working vertebrate muscle". Biochem. Soc. Trans. 30 (2): 264–270. doi:10.1042/bst0300264. PMID 12023862.
- ^ a b c d Raben N, Exelbert R, Spiegel R, Sherman JB, Nakajima H, Plotz P, Heinisch J (1995). "Functional expression of human mutant phosphofructokinase in yeast: genetic defects in French Canadian and Swiss patients with phosphofructokinase deficiency". Am. J. Hum. Genet. 56 (1): 131–141. PMC 1801305. PMID 7825568.
- ^ Garrett, Reginald; Grisham, Reginald (2012). Biochemistry. Cengage Learning. p. 585. ISBN 978-1133106296.
- ^ T. Selwood; E. K. Jaffe. (2011). "Dynamic dissociating homo-oligomers and the control of protein function.". Arch. Biochem. Biophys. 519 (2): 131–43. doi:10.1016/j.abb.2011.11.020. PMC 3298769. PMID 22182754.
- ^ a b Shirakihara Y, Evans PR (1988). "Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products". J. Mol. Biol. 204 (4): 973–994. doi:10.1016/0022-2836(88)90056-3. PMID 2975709.
External links
- Phosphofructokinases at the US National Library of Medicine Medical Subject Headings (MeSH)
This article incorporates text from the public domain Pfam and InterPro IPR000023
Transferases: phosphorus-containing groups (EC 2.7)
|
|
2.7.1-2.7.4:
phosphotransferase/kinase
(PO4) |
2.7.1: OH acceptor |
- Hexo-
- Gluco-
- Fructo-
- Galacto-
- Phosphofructo-
- 1
- Liver
- Muscle
- Platelet
- 2
- Riboflavin
- Shikimate
- Thymidine
- NAD+
- Glycerol
- Pantothenate
- Mevalonate
- Pyruvate
- Deoxycytidine
- PFP
- Diacylglycerol
- Phosphoinositide 3
- Class I PI 3
- Class II PI 3
- Sphingosine
- Glucose-1,6-bisphosphate synthase
|
|
2.7.2: COOH acceptor |
- Phosphoglycerate
- Aspartate kinase
|
|
2.7.3: N acceptor |
|
|
2.7.4: PO4 acceptor |
- Phosphomevalonate
- Adenylate
- Nucleoside-diphosphate
- Uridylate
- Guanylate
- Thiamine-diphosphate
|
|
|
2.7.6: diphosphotransferase
(P2O7) |
- Ribose-phosphate diphosphokinase
- Thiamine diphosphokinase
|
|
2.7.7: nucleotidyltransferase
(PO4-nucleoside) |
Polymerase |
DNA polymerase |
- DNA-directed DNA polymerase
- I
- II
- III
- IV
- V
- RNA-directed DNA polymerase
- Reverse transcriptase
- Telomerase
- DNA nucleotidylexotransferase/Terminal deoxynucleotidyl transferase
|
|
RNA nucleotidyltransferase |
- RNA polymerase/DNA-directed RNA polymerase
- RNA polymerase I
- RNA polymerase II
- RNA polymerase III
- RNA polymerase IV
- Primase
- RNA-dependent RNA polymerase
- PNPase
|
|
|
Phosphorolytic
3' to 5' exoribonuclease |
|
|
Nucleotidyltransferase |
- UTP—glucose-1-phosphate uridylyltransferase
- Galactose-1-phosphate uridylyltransferase
|
|
Guanylyltransferase |
|
|
Other |
- Recombinase (Integrase)
- Transposase
|
|
|
2.7.8: miscellaneous |
Phosphatidyltransferases |
- CDP-diacylglycerol—glycerol-3-phosphate 3-phosphatidyltransferase
- CDP-diacylglycerol—serine O-phosphatidyltransferase
- CDP-diacylglycerol—inositol 3-phosphatidyltransferase
- CDP-diacylglycerol—choline O-phosphatidyltransferase
|
|
Glycosyl-1-phosphotransferase |
- N-acetylglucosamine-1-phosphate transferase
|
|
|
2.7.10-2.7.13: protein kinase
(PO4; protein acceptor) |
2.7.10: protein-tyrosine |
|
|
2.7.11: protein-serine/threonine |
- see serine/threonine-specific protein kinases
|
|
2.7.12: protein-dual-specificity |
- see serine/threonine-specific protein kinases
|
|
2.7.13: protein-histidine |
- Protein-histidine pros-kinase
- Protein-histidine tele-kinase
- Histidine kinase
|
|
Enzymes
|
|
Activity |
- Active site
- Binding site
- Catalytic triad
- Oxyanion hole
- Enzyme promiscuity
- Catalytically perfect enzyme
- Coenzyme
- Cofactor
- Enzyme catalysis
- Enzyme kinetics
- Lineweaver–Burk plot
- Michaelis–Menten kinetics
|
|
Regulation |
- Allosteric regulation
- Cooperativity
- Enzyme inhibitor
|
|
Classification |
- EC number
- Enzyme superfamily
- Enzyme family
- List of enzymes
|
|
Types |
- EC1 Oxidoreductases(list)
- EC2 Transferases(list)
- EC3 Hydrolases(list)
- EC4 Lyases(list)
- EC5 Isomerases(list)
- EC6 Ligases(list)
|
UpToDate Contents
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
English Journal
- Central metabolic pathways of Aureobasidium pullulans CGMCC1234 for pullulan production.
- Sheng L1, Liu C2, Tong Q3, Ma M4.
- Carbohydrate polymers.Carbohydr Polym.2015 Dec 10;134:333-6. doi: 10.1016/j.carbpol.2015.08.016. Epub 2015 Aug 13.
- With the purpose of understanding the metabolic network of Aureobasidium pullulans, the central metabolic pathways were confirmed by the activities of the key enzymes involved in different pathways. The effect of different iodoacetic acid concentrations on pullulan fermentation was also investigated
- PMID 26428132
- Targeting glycolysis in the malaria parasite Plasmodium Falciparum.
- van Niekerk DD1, Penkler G1,2, du Toit F1, Snoep JL1,2,3.
- The FEBS journal.FEBS J.2015 Dec 9. doi: 10.1111/febs.13615. [Epub ahead of print]
- Glycolysis is the main pathway for ATP production in the malaria parasite Plasmodium falciparum and essential for its survival. Following a sensitivity analysis of a detailed kinetic model for glycolysis in the parasite, the glucose transport reaction was identified as the step whose activity needed
- PMID 26648082
- O-linked N-acetylglucosaminylation of Sp1 interferes with Sp1 activation of glycolytic genes.
- Lim K1, Yoon BH2, Ha CH3.
- Biochemical and biophysical research communications.Biochem Biophys Res Commun.2015 Dec 4;468(1-2):349-53. doi: 10.1016/j.bbrc.2015.10.096. Epub 2015 Oct 22.
- Glycolysis, the primary pathway metabolizing glucose for energy production, is connected to the hexosamine biosynthetic pathway (HBP) which produces UDP-N-acetylglucosamine (UDP-GlcNAc), a GlcNAc donor for O-linked GlcNAc modification (O-GlcNAc), as well as for traditional elongated glycosylation. T
- PMID 26499076
Japanese Journal
- Structures of Burkholderia thailandensis nucleoside kinase : implications for the catalytic mechanism and nucleoside selectivity
- Yasutake Yoshiaki,Ota Hiroko,Hino Emisa,Sakasegawa Shin-ichi,Tamura Tomohiro
- Acta Crystallographica Section D, Biological Crystallography 67(11), 945-956, 2011-11
- … The nucleoside kinase (NK) from the mesophilic Gram-negative bacterium Burkholderia thailandensis (BthNK) is a member of the phosphofructokinase B (Pfk-B) family and catalyzes the Mg^[2+]- and ATP-dependent phosphorylation of a broad range of nucleosides such as inosine (INO), adenosine (ADO) and mizoribine (MZR). …
- NAID 120003560612
- イネにおける Rhizoctonia solani の感染によって誘導されるPFP及びPFKの活性とmRNAの発現変化
Related Links
- 栄養・生化学辞典 ホスホフルクトキナーゼの用語解説 - [EC2.7.1.11].解糖の律速酵素で,図の反応を触媒する.ATPやクエン酸によって負に制御される. ... お知らせ 10月16日 飲み物がわかる辞典を追加しました。 09月13日 日本の ...
- ホスホフルクトキナーゼ(Phosphofructokinase 、PFK)は、フルクトース-6-リン酸に作用する酵素で、全部で2つのタイプがある。 ホスホフルクトキナーゼ1(EC 2.7.1.11)…フルクトース-1,6-ビスリン酸 に変換する。 ホスホフルクトキナーゼ2 ...
Related Pictures
★リンクテーブル★
[★]
- 英
- glycolytic pathway
- 同
- エムデン-マイヤーホフ経路 Embden-Meyerhof pathway
- 関
- 解糖、TCA回路
- CH(OH)-CH(OH)-C(OH)H-CH(OH)-C(CH2OH)H-O- グルコース (OHが↓↓↑↓↑)
- CH(OH)-CH(OH)-C(OH)H-CH(OH)-C(CH2O-PO3)H-O- グルコース-6-リン酸 (OHが↓↓↑↓↑)
- C(CH2OH)OH-C(OH)H-CH(OH)-C(CH2O-PO3)H-O- フルクトース-6-リン酸
- C(CH2O-PO3)OH-C(OH)H-CH(OH)-C(CH2O-PO3)H-O- フルクトース-1,6-リン酸
glucose
↓-hexokinase/glucokinase(liver)
glucose 6-phosphate
↓-phosphohexose isomerase
fructose 6-phosphate
↓-phosphofructokinase
fructose 1,6-bisphosphate
↓-aldolase
glyceraldehyde 3-phosphate
↓-glyceraldehyde-3-phosphate dehydrogenase
1,3-bisphosphoglycerate
↓-phosphoglycerate kinase →ATP
3-phosphoglycerate
↓-phosphoglyceate mutase
2-phosphoglycerate
↓-enolase
phosphoenolpyruvate
↓-pyruvate kinase → ATP
pyruvate
-(pyruvate dehydrogenase)→acetyl-CoA
-(pyruvate carboxylase)→oxaloacetate-(NADH+H+)→malate
解糖系の酵素 (first aid step1 2006 p.87, FASTEP1_87_酵素一覧.xls)
[★]
- 英
- phosphofructokinase, PFK
- 同
- ホスホフルクトキナーゼ1 phosphofructokinase-1
- 関
- ホスホフルクトキナーゼ2。解糖系
生体内での調節
乳酸アシドーシスにおいて
- 重炭酸Naの投与でアシドーシスを補正する場合、HCO3-はphosphofructokinaseの活性を亢進させるので、乳酸アシドーシスを悪化させることがある。
急性呼吸性アルカローシスにいて
- 血液のpHが上昇するとホスホフルクトキナーゼの活性が亢進するため、血液中のリン酸が細胞内に取り込まれる結果、低リン血症を来すことがある。
解糖系
臨床関連
[★]
- 英
- metabolic pathway
- 関
- 代謝経路
- 解糖系
- TCA回路
- 電子伝達系
- 尿酸回路
- 糖新生経路
[★]
- 英
- fructose6-phosphate, F6P, fructose 6-phosphate
- 同
- フルクトース6リン酸、フルクトース一リン酸 fructose monophosphate
- 関
解糖系
[★]
- 英
- fructose 1,6-bisphosphate FBP
- 同
- フルクトース1,6-二リン酸 fructose 1,6-diphosphate
- 関
- [[]]
解糖系
[★]
筋ホスホフルクトキナーゼ欠損症
- 関
- glycogen storage disease type VII、Tarui disease
[★]
[★]
[★]
ホスホフルクトキナーゼ欠乏症
[★]
C型ホスホフルクトキナーゼ1