出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2013/01/03 15:40:29」(JST)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (November 2012) |
Neuron: Motor neuron | |
---|---|
Micrograph of the hypoglossal nucleus showing motor neurons with their characteristic coarse Nissl substance ("tigroid" cytoplasm). H&E-LFB stain. |
|
Location | Ventral horn of the spinal cord, some cranial nerve nuclei |
Function | Excitatory projection (to NMJ) |
Neurotransmitter | UMN to LMN: glutamate; LMN to NMJ: ACh |
Morphology | Projection neuron |
Presynaptic connections | M1 via the Corticospinal tract |
Postsynaptic connections | Muscle fibers and other neurons |
NeuroLex ID | nifext_103 |
|
In neurology, the term motor neuron (or motoneuron) classically applies to neurons located in the central nervous system (or CNS) that project their axons outside the CNS and directly or indirectly control muscles. The motor neuron is often associated with efferent neuron, primary neuron, or alpha motor neurons. Motor neurones are neurones that carry signals from the spinal cord to the muscles to produce movement. [1]
Contents
|
Branch of NS | Position | Neurotransmitter |
---|---|---|
Somatic | n/a | Acetylcholine |
Parasympathetic | Preganglionic | Acetylcholine |
Parasympathetic | Ganglionic | Acetylcholine |
Sympathetic | Preganglionic | Acetylcholine |
Sympathetic | Ganglionic | Norepinephrine* |
*Except fibers to sweat glands and certain blood vessels Motoneuron neurotransmitters |
According to their targets, motor neurons are classified into three broad categories:
Somatic motor neurons, which originate in the central nervous system, project their axons to the target tissues, which are always skeletal muscles.[2] Skeletal muscles are involved in locomotion (such as the muscles of the limbs, abdominal, and intercostal muscles).
Special visceral motor neurons, also called branchial motor neurons, which directly innervate branchial muscles (that motorize the gills in fish and the face and neck in land vertebrates).
General visceral motor neurons (visceral motor neurons for short) which indirectly innervate cardiac muscle and smooth muscles of the viscera ( the muscles of the arteries): they synapse onto neurons located in ganglia of the autonomic nervous system (sympathetic and parasympathetic), located in the peripheral nervous system (PNS), which themselves directly innervate visceral muscles (and also some gland cells).
In other words:
It could be argued that, in the command of visceral muscles, the ganglionic neuron, parasympathetic or sympathetic, is the real motor neuron, being the one that directly innervates the muscle (whereas the general visceral motor neuron is, strictly speaking, a preganglionic neuron). But, for historical reasons, the term motor neuron is reserved for the CNS neuron.
All vertebrate motor neurons are cholinergic, that is, they release the neurotransmitter acetylcholine. Parasympathetic ganglionic neurons are also cholinergic, whereas most sympathetic ganglionic neurons are noradrenergic, that is, they release the neurotransmitter noradrenaline. (see Table)
The interface between a motor neuron and muscle fiber is a specialized synapse called the neuromuscular junction. Upon adequate stimulation, the motor neuron releases a flood of neurotransmitters that bind to postsynaptic receptors and triggers a response in the muscle fiber.
Somatic motoneurons are further subdivided into two types: alpha efferent neurons and gamma efferent neurons. (Both types are called efferent to indicate the flow of information from the central nervous system (CNS) to the periphery.)
In addition to voluntary skeletal muscle contraction, alpha motoneurons also contribute to muscle tone, the continuous force generated by noncontracting muscle to oppose stretching. When a muscle is stretched, sensory neurons within the muscle spindle detect the degree of stretch and send a signal to the CNS. The CNS activates alpha motoneurons in the spinal cord, which cause extrafusal muscle fibers to contract and thereby resist further stretching. This process is also called the stretch reflex.
Gamma motoneurons regulate the sensitivity of the spindle to muscle stretching. With activation of gamma neurons, intrafusal muscle fibers contract so that only a small stretch is required to activate spindle sensory neurons and the stretch reflex.
A single motor neuron may synapse with one or more muscle fibers. The motor neuron and all of the muscle fibers to which it connects is a motor unit. Motor units are split up into 3 categories: slow motor units, fast fatiguing motor units, and fast fatigue-resistant motor units.
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「motoneuron」「motoneurone」 |
拡張検索 | 「maximal motor nerve conduction velocity」 |
関連記事 | 「motor」「nerve」 |
.