Topoisomerases (type I: EC 5.99.1.2, type II: EC 5.99.1.3) are enzymes that regulate the overwinding or underwinding of DNA. The winding problem of DNA arises due to the intertwined nature of its double helical structure. For example, during DNA replication, DNA becomes overwound ahead of a replication fork. If left unabated, this tension would eventually grind replication to a halt (a similar event happens during transcription.)
In order to help overcome these types of topological problems caused by the double helix, topoisomerases bind to either single-stranded or double-stranded DNA and cut the phosphate backbone of the DNA. This intermediate break allows the DNA to be untangled or unwound, and, at the end of these processes, the DNA backbone is resealed again. Since the overall chemical composition and connectivity of the DNA does not change, the tangled and untangled DNAs are chemical isomers, differing only in their global topology, thus their name. Topoisomerases are isomerase enzymes that act on the topology of DNA.[1]
Contents
- 1 Discovery
- 2 Function
- 3 Clinical significance
- 4 Topological problems
- 5 Classes
- 6 References
- 7 Further reading
- 8 See also
- 9 External links
|
Discovery
The first topoisomerase, E. coli topo I, was discovered by James C. Wang.[2]
Function
The double-helical configuration that DNA strands naturally reside makes them difficult to separate, and yet they must be separated by helicase proteins if other enzymes are to transcribe the sequences that encode proteins, or if chromosomes are to be replicated. In so-called circular DNA, in which double helical DNA is bent around and joined in a circle, the two strands are topologically linked, or knotted. Otherwise identical loops of DNA, having different numbers of twists, are topoisomers, and cannot be interconverted by any process that does not involve the breaking of DNA strands. Topoisomerases catalyze and guide the unknotting or unkinking of DNA[3] by creating transient breaks in the DNA using a conserved Tyrosine as the catalytic residue.[1]
The insertion of viral DNA into chromosomes and other forms of recombination can also require the action of topoisomerases.
Clinical significance
- See also topoisomerase inhibitor
Many drugs operate through interference with the topoisomerases [1]. The broad-spectrum fluoroquinolone antibiotics act by disrupting the function of bacterial type II topoisomerases. These small molecule inhibitors act as efficient anti-bacterial by hijacking the natural ability of topoisomerase to create breaks in chromosomal DNA.
Some chemotherapy drugs called topoisomerase inhibitors work by interfering with mammalian-type eukaryotic topoisomerases in cancer cells. This induces breaks in the DNA that ultimately lead to programmed cell death (apoptosis). This DNA-damaging effect, outside of its potentially curative properties, may lead to secondary neoplasms in the patient.[citation needed]
Topoisomerase I is the antigen recognized by Anti Scl-70 antibodies in scleroderma.
Topological problems
There are three main types of topology: supercoiling, knotting and catenation. Outside of the essential processes of replication or transcription, DNA must be kept as compact as possible, and these three states help this cause. However, when transcription or replication occur, DNA must be free, and these states seriously hinder the processes. In addition, during replication, the newly replicated duplex of DNA and the original duplex of DNA become intertwined and must be completely separated in order to ensure genomic integrity as a cell divides. As a transcription bubble proceeds, DNA ahead of the transcription fork becomes overwound, or positively supercoiled, while DNA behind the transcription bubble becomes underwound, or negatively supercoiled. As replication occurs, DNA ahead of the replication bubble becomes positively supercoiled, while DNA behind the replication fork becomes entangled forming precatenanes. One of the most essential topological problem occurs at the very end of replication, when daughter chromosomes must be fully disentangled before mitosis occurs. Topoisomerase IIA plays an essential role in resolving these topological problems.
Classes
Topoisomerases can fix these topological problems and are separated into two types separated by the number of strands cut in one round of action:[4] Both these classes of enzyme utilize a conserved tyrosine. However these enzymes are structurally and mechanistically different. For a video of this process see: http://www.youtube.com/watch?v=EYGrElVyHnU&feature=related.
- Type I topoisomerase cuts one strand of a DNA double helix, relaxation occurs, and then the cut strand is reannealed. Cutting one strand allows the part of the molecule on one side of the cut to rotate around the uncut strand, thereby reducing stress from too much or too little twist in the helix. Such stress is introduced when the DNA strand is "supercoiled" or uncoiled to or from higher orders of coiling. Type I topoisomerases are subdivided into two subclasses: type IA topoisomerases, which share many structural and mechanistic features with the type II topoisomerases, and type IB topoisomerases, which utilize a controlled rotary mechanism. Examples of type IA topoisomerases include topo I and topo III. In the past, type IB topoisomerases were referred to as eukaryotic topo I, but IB topoisomerases are present in all three domains of life. It is interesting to note that type IA topoisomerases form a covalent intermediate with the 5' end of DNA, while the IB topoisomerases form a covalent intermediate with the 3' end of DNA. Recently, a type IC topoisomerase has been identified, called topo V. While it is structurally unique from type IA and IB topoisomerases, it shares a similar mechanism with type IB topoisomerase.
- Type II topoisomerase cuts both strands of one DNA double helix, passes another unbroken DNA helix through it, and then reanneals the cut strand. It is also split into two subclasses: type IIA and type IIB topoisomerases, which share similar structure and mechanisms. Examples of type IIA topoisomerases include eukaryotic topo II, E. coli gyrase, and E. coli topo IV. Examples of type IIB topoisomerase include topo VI. Type II topisomerases utilize ATP hydrolysis.
Topoisomerase |
IA |
IB |
IIA |
IIB |
Metal Dependence |
Yes |
No |
Yes |
Yes |
ATP Dependence |
No |
No |
Yes |
Yes |
Single- or Double-Stranded cleavage? |
SS |
SS |
DS |
DS |
Cleavage Polarity |
5' |
3' |
5' |
5' |
Change in L |
±1 |
±N |
±2 |
±2 |
Both type I and type II topoisomerases change the linking number (L) of DNA. Type IA topoisomerases change the linking number by one, type IB and type IC topoisomerases change the linking number by any integer, while type IIA and type IIB topoisomerases change the linking number by two.
References
- ^ a b Champoux JJ (2001). "DNA topoisomerases: structure, function, and mechanism". Annu. Rev. Biochem. 70: 369–413. doi:10.1146/annurev.biochem.70.1.369. PMID 11395412.
- ^ "National Academy of Sciences: NAS Award in Molecular Biology". National Academy of Science. http://www.nasonline.org/site/PageServer?pagename=AWARDS_molbio. Retrieved 2009-01-07.
- ^ C.Michael Hogan. 2010. Deoxyribonucleic acid. Encyclopedia of Earth. National Council for Science and the Environment. eds. S.Draggan and C.Cleveland. Washington DC
- ^ Wang JC (April 1991). "DNA topoisomerases: why so many?". J. Biol. Chem. 266 (11): 6659–62. PMID 1849888. http://www.jbc.org/cgi/pmidlookup?view=long&pmid=1849888.
- Pommier, Yves (May 28, 2010). "DNA topoisomerases and their poisoning by anticancer and antibacterial drugs". Chemistry & Biology. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20534341. Retrieved May 28, 2010.
Further reading
- James C. Wang (2009) Untangling the Double Helix. DNA Entanglement and the Action of the DNA Topoisomerases, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2009. 245 pp. ISBN 9780879698799
See also
- DNA topology
- Supercoil
- TOP1
- Type II topoisomerase
External links
Proteins: enzymes
|
|
Topics |
Active site · Allosteric regulation · Binding site · Catalytically perfect enzyme · Coenzyme · Cofactor · Cooperativity · EC number · Enzyme catalysis · Enzyme inhibitor · Enzyme kinetics · Lineweaver–Burk plot · Michaelis–Menten kinetics · List of enzymes
|
|
Types |
EC1 Oxidoreductases/list · EC2 Transferases/list · EC3 Hydrolases/list · EC4 Lyases/list · EC5 Isomerases/list · EC6 Ligases/list
|
|
B enzm: 1.1/2/3/4/5/6/7/8/10/11/13/14/15-18, 2.1/2/3/4/5/6/7/8, 2.7.10, 2.7.11-12, 3.1/2/3/4/5/6/7, 3.1.3.48, 3.4.21/22/23/24, 4.1/2/3/4/5/6, 5.1/2/3/4/99, 6.1-3/4/5-6
|
|
Isomerase: topoisomerases (EC 5.99)
|
|
5.99.1 |
Type I topoisomerase - Type II topoisomerase (gyrase, topoisomerase IV)
|
|
B enzm: 1.1/2/3/4/5/6/7/8/10/11/13/14/15-18, 2.1/2/3/4/5/6/7/8, 2.7.10, 2.7.11-12, 3.1/2/3/4/5/6/7, 3.1.3.48, 3.4.21/22/23/24, 4.1/2/3/4/5/6, 5.1/2/3/4/99, 6.1-3/4/5-6
|
|
DNA replication (Prokaryotic, Eukaryotic)
|
|
Separation
and initiation |
Prokaryotic
(initiation)
|
Pre-replication complex
Cdc6
Helicase (dnaA, dnaB, T7) · Primase (dnaG)
|
|
Eukaryotic
(preparation in
G1 phase)
|
Pre-replication complex: Origin recognition complex (ORC1, ORC2, ORC3, ORC4, ORC5, ORC6) · Minichromosome maintenance (MCM2 · MCM3 · MCM4 · MCM5 · MCM6 · MCM7) · CDC6
Licensing factor
Autonomously replicating sequence
Single-strand binding protein (SSBP2, SSBP3, SSBP4)
RNase H (RNASEH1, RNASEH2A)
Helicase: HFM1
Primase: PRIM1 · PRIM2
|
|
Both
|
Origin of replication/Ori/Replicon
Replication fork (Lagging and leading strands) · Okazaki fragment · Primer
|
|
|
Replication |
Prokaryotic
(elongation)
|
DNA polymerase III holoenzyme (dnaC, dnaE, dnaH, dnaN, dnaQ, dnaT, dnaX) · Replisome · DNA ligase · DNA clamp · Topoisomerase (DNA gyrase)
Prokaryotic DNA polymerase: DNA polymerase I (Klenow fragment)
|
|
Eukaryotic
(synthesis in
S phase)
|
Replication factor C (RFC1) · Flap endonuclease (FEN1) · Topoisomerase · Replication protein A (RPA1)
Eukaryotic DNA polymerase: delta (POLD1, POLD2, POLD3, POLD4)
DNA clamp (PCNA)
|
|
Both
|
Movement: Processivity · DNA ligase
|
|
|
Termination |
Telomere: Telomerase (TERT, TERC, DKC1)
|
|
see also DNA replication and repair-deficiency disorder B bsyn: dna (repl, cycl, reco, repr) · tscr (fact, tcrg, nucl, rnat, rept, ptts) · tltn (risu, pttl, nexn) · dnab, rnab/runp · stru (domn, 1°, 2°, 3°, 4°)
|
|
Antigens: Autoantigens
|
|
Dehydrogenase |
Branched-chain alpha-keto acid dehydrogenase complex · Oxoglutarate dehydrogenase · Pyruvate dehydrogenase
|
|
Transglutaminase |
Epidermal transglutaminase · Tissue transglutaminase
|
|
Nucleoporins |
NUP35 · NUP37 · NUP43 · NUP50 · NUP54 · NUP62 · NUP85 · NUP88 · NUP93 · NUP98 · NUP107 · NUP133 · NUP153 · NUP155 · NUP160 · NUP188 · NUP210 · NUP205 · NUP214
|
|
Other |
Acetylcholine receptor · Actin · Apolipoprotein H · Cardiolipin · Centromere · Filaggrin(Citrullinate) · Gangliosides · Sp100 nuclear antigen · Thrombin · Topoisomerase
|
|
|
cell/phys/auag/auab/comp, igrc
|
|
|
|
|
|