出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2013/11/27 09:36:11」(JST)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (May 2008) |
A sigmoid formula is a mathematical function having an "S" shape (sigmoid curve). Often, sigmoid function refers to the special case of the logistic function shown on the right and defined by the formula
Another example is the Gompertz curve. It is used in modeling systems that saturate at large values of t. Another example is the ogee curve as used in the spillway of some dams. A wide variety of sigmoid functions have been used as the activation function of artificial neurons, including the logistic and hyperbolic tangent functions. Sigmoid curves are also common in statistics as cumulative distribution functions, such as the integrals of the logistic distribution, the normal distribution, and Student's t probability density functions.
A sigmoid function is a bounded differentiable real function that is defined for all real input values and has a positive derivative at each point.[1]
In general, a sigmoid function is real-valued and differentiable, having either a non-negative or non-positive first derivative[citation needed] which is bell shaped. There are also a pair of horizontal asymptotes as . The differential equation , with the inclusion of a boundary condition providing a third degree of freedom, , provides a class of functions of this type.
Many natural processes, including those of complex system learning curves, exhibit a progression from small beginnings that accelerates and approaches a climax over time. When a detailed description is lacking, a sigmoid function is often used[2] .
Besides the logistic function, sigmoid functions include the ordinary arctangent, the hyperbolic tangent, the Gudermannian function, and the error function, but also the generalised logistic function and algebraic functions like .
The integral of any smooth, positive, "bump-shaped" function will be sigmoidal, thus the cumulative distribution functions for many common probability distributions are sigmoidal. The most famous such example is the error function, which is related to the Cumulative Distribution Function (CDF) of a normal distribution.
Wikimedia Commons has media related to Sigmoid functions. |
|accessdate=
requires |url=
(help)
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「S字形曲線」「シグモイド曲線」 |
関連記事 | 「sigmoid」「curve」 |
.