出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2014/02/01 10:38:41」(JST)
This article may need to be rewritten entirely to comply with Wikipedia's quality standards. You can help. The discussion page may contain suggestions. (June 2009) |
Premature ventricular contraction | |
---|---|
Classification and external resources | |
A premature ventricular contraction marked by the arrow.
|
|
ICD-10 | I49.3 |
ICD-9 | 427.69 |
DiseasesDB | 32412 |
eMedicine | emerg/773 |
MeSH | D018879 |
A premature ventricular contraction (PVC), also known as a premature ventricular complex, ventricular premature contraction (or complex or complexes) (VPC), ventricular premature beat (VPB), or ventricular extrasystole (VES), is a relatively common event where the heartbeat is initiated by Purkinje fibres in the ventricles rather than by the sinoatrial node, the normal heartbeat initiator. The electrical events of the heart detected by the electrocardiogram allow a PVC to be easily distinguished from a normal heart beat. Although a PVC can be a sign of decreased oxygenation to the myocardium (cardiac muscle) often PVCs are benign and may even be found in otherwise healthy hearts. [1]
A PVC may be perceived as a "skipped beat" or felt as palpitations in the chest. In a normal heartbeat, the ventricles contract after the atria have helped to fill them by contracting; in this way the ventricles can pump a maximized amount of blood both to the lungs and to the rest of the body. In a PVC, the ventricles contract first and before the atria have optimally filled the ventricles with blood, which means that circulation is inefficient. However, single beat PVC arrhythmias do not usually pose a danger and can be asymptomatic in healthy individuals.[2]
Premature ventricular contractions can occur in a healthy person of any age, but are more prevalent in the elderly and in men.[3] They frequently occur spontaneously with no known cause. Heart rate turbulence (HRT) is a phenomenon representing the return to equilibrium of the heart rate after a PVC. HRT parameters correlate significantly with mortality after myocardial infarction (heart attack).[4]
Some possible causes of PVCs include:
Although there are many signs and symptoms associated with PVCs, PVCs may have no symptom at all. An isolated PVC is hard to catch without the use of a Holter monitor. PVCs may be perceived as a skipped heart beat, a strong beat, or a feeling of suction in the chest. They may also cause chest pain, a faint feeling, fatigue, or hyperventilation after exercise.[8] Several PVCs in a row becomes a form of ventricular tachycardia (VT), which is a potentially fatal cardiac arrhythmia.
Some other possible signs and symptoms of PVCs:
PVCs are usually diagnosed after the patient has described “skipped beats”, pauses or palpitations. Typically the palpitations felt by PVC patients are very irregular and less sustained than patients with other types of arrhythmia. They are likely to have “flip flopping” sensations where it feels like the heart is flipping over or pounding due to there being a pause after the premature contraction and then a powerful contraction after the pause. There is a possibility that they might feel a ‘fluttering’ in their chest or a pounding in their neck but these two types of palpitations aren’t very common in PVC patients.[10]
A physical examination should be conducted after a full history has been taken. This is useful in determining any possible heart defects that might be causing the palpitations. For example, some cases of premature ventricular contraction have a mitral-valve prolapse which can be determined through the physical examination.[10] The next step in diagnosis is a 12 lead ECG which can be performed in the doctors’ office over a short period of time however this is often non-conclusive in diagnosis because it is not very sensitive and there is only a small chance of a premature ventricular contraction occurring in the short period of time. Holter monitoring is a far better method for diagnosis as it is continuous recording of the heart’s rhythm over a period of 24 hours, or event monitoring which records noncontinuously for 30 days or indefinitely. This increases the likelihood of a premature ventricular contraction occurring during the recording period and is therefore more useful in diagnosis.[11]
When looking at an electrocardiograph premature ventricular contractions are easily spotted and therefore a definitive diagnosis can be made. The QRS and T waves look very different from normal readings. The spacing between the PVC and the preceding QRS wave is a lot shorter than usual and the time between the PVC and the proceeding QRS is a lot longer. However, the time between the preceding and proceeding QRS waves stays the same as normal due to the compensatory pause.[12] PVCs can be distinguished from premature atrial contractions because the compensatory pause is longer following premature ventricular contractions.[13]
There are four different named patterns of regularly occurring PVCs. Depending whether there are 1, 2, or 3 normal beats between each PVC, the rhythm is called bigeminy, trigeminy, or quadrigeminy. Unifocal PVCs are triggered from a single site in the ventricle, causing the peaks on the ECG to look the same. Multifocal PVCs arise when more than one site in the ventricles initiate depolarization, causing each peak on the ECG to have a different shape. If 3 or more PVCs occur in a row it may be called Ventricular tachycardia.[13]
Isolated PVCs with benign characteristics require no treatment. In healthy individuals, PVCs can often be resolved by restoring the balance of magnesium, calcium and potassium within the body. The most effective treatment is the elimination of triggers (particularly the cessation of the use of substances such as caffeine, and certain drugs.)
In the setting of existing cardiac disease, however, PVCs must be watched carefully, as they may cause a form of ventricular tachycardia (rapid heartbeat).
Recent studies have shown that those subjects who have an extremely high occurrence of PVCs (several thousand a day) can develop dilated cardiomyopathy. In these cases, if the PVCs are reduced or removed (for example, via ablation therapy) the cardiomyopathy usually regresses.[14][15]
Normally impulses pass through both ventricles almost simultaneously and the depolarization waves of the two ventricles partially cancel each other out in the ECG. However, when a PVC occurs the impulse nearly always travels through only one bundle fiber, so there is no neutralisation effect; this results in the high voltage QRS wave in the electrocardiograph.
There are three main physiological explanations for premature ventricular contractions: Enhanced ectopic nodal automaticity, Re-entry signalling, and Toxic/Reperfusion Triggered.
Ectopic enhanced nodal automaticity suggests foci of sub-pulmonic valvular pacemaker cells that have a subthreshold potential for firing. The basic rhythm of the heart raises these cells to threshold, which precipitates an ectopic beat. This process is the underlying mechanism for arrhythmias due to excess catecholamines and some electrolyte deficiencies, particularly hyperkalemia (hypokalemia?).
Reentry occurs when an area of 1-way block in the Purkinje fibers and a second area of slow conduction are present. This condition is frequently seen in patients with underlying heart disease that creates areas of differential conduction and recovery due to myocardial scarring or ischemia. During ventricular activation, one bundle tract's area of slow conduction activates the other tract's bundle fibers post block after the rest of the ventricle has recovered. This resulting in an extra beat. Reentry can produce single ectopic beats, or it can trigger paroxysmal tachycardia.
Triggered beats are considered to be due to after-depolarizations triggered by the preceding action potential. These are often seen in patients with ventricular arrhythmias due to digoxin toxicity and reperfusion therapy after myocardial infarction (MI).[16]
There are a number of different molecular explanations for PVCs. One explanation is most basically due to an increased amount of cyclic AMP(cAMP) in the ventricular cardiac myocytes leading to increased flow of calcium ions into the cell. This may happen for the following reasons:
Potassium ion concentrations are a major determinant in the magnitude of the electrochemical potential of cells, and hypokalemia makes it more likely that cells will depolarize spontaneously. Hypercalcemia has a similar effect, although clinically it is of less concern. Magnesium ions affect the flow of calcium ions, and they affect the function of the Na+/K+ ATPase, and are necessary for maintaining potassium levels. Hypomagnesemia therefore also makes spontaneous depolarization more likely.
Existing damage to the myocardium can also provoke PVCs. The myocardial scarring that occurs in myocardial infarction and also in the surgical repair of congenital heart disease can disrupt the conduction system of the heart and may also irritate surrounding viable ventricular myocytes, make them more likely to depolarize spontaneously. Inflammation of the myocardium (as occurs in myocarditis) and systemic inflammation cause surges of cytokines, which can affect the electrical properties of myocytes and may be ultimately responsible for causing irritability of myocytes.
|displayauthors=
suggested (help)
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「心室性期外収縮」「PVCs」 |
関連記事 | 「contraction」「premature」「ventricular」 |
[★] 心室性期外収縮 premature ventricular contractions
.