出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/10/28 17:43:09」(JST)
An anaerobic organism or anaerobe is any organism that does not require oxygen for growth. It may react negatively or even die if oxygen is present. An anaerobic organism may be unicellular (e.g. protozoans,[1] bacteria[2]) or multicellular.[3]
For practical purposes, there are three categories of anaerobe:
Obligate anaerobes may use fermentation or anaerobic respiration.[citation needed] Aerotolerant organisms are strictly fermentative.[citation needed] In the presence of oxygen, facultative anaerobes use aerobic respiration; without oxygen, some of them ferment; some use anaerobic respiration.[6]
There are many anaerobic fermentative reactions.
Fermentative anaerobic organisms mostly use the lactic acid fermentation pathway:
The energy released in this equation is approximately 150 kJ per mol, which is conserved in regenerating two ATP from ADP per glucose. This is only 5% of the energy per sugar molecule that the typical aerobic reaction generates.
Plants and fungi (e.g., yeasts) in general use alcohol (ethanol) fermentation when oxygen becomes limiting:
The energy released is about 180 kJ per mol, which is conserved in regenerating two ATP from ADP per glucose.
Anaerobic bacteria and archaea use these and many other fermentative pathways, e.g., propionic acid fermentation, butyric acid fermentation, solvent fermentation, mixed acid fermentation, butanediol fermentation, Stickland fermentation, acetogenesis, or methanogenesis.
Since normal microbial culturing occurs in atmospheric air, which is an aerobic environment, the culturing of anaerobes poses a problem. Therefore, a number of techniques are employed by microbiologists when culturing anaerobic organisms, for example, handling the bacteria in a glovebox filled with nitrogen or the use of other specially sealed containers, or techniques such as injection of the bacteria into a dicot plant, which is an environment with limited oxygen. The GasPak System is an isolated container that achieves an anaerobic environment by the reaction of water with sodium borohydride and sodium bicarbonate tablets to produce hydrogen gas and carbon dioxide. Hydrogen then reacts with oxygen gas on a palladium catalyst to produce more water, thereby removing oxygen gas. The issue with the Gaspak method is that an adverse reaction can take place where the bacteria may die, which is why a thioglycollate medium should be used. The thioglycollate supplies a medium mimicking that of a dicot, thus providing not only an anaerobic environment but all the nutrients needed for the bacteria to thrive.[7]
Complex multicellular life that does not need oxygen is said to be rare, however there are examples of such organisms.
At least three species have been discovered in the hypersaline anoxic L'Atalante basin at the bottom of the Mediterranean Sea in 2010, metabolising with hydrogen, lacking mitochondria and instead using hydrogenosomes.[8][3]
Some organisms metabolise primarily using glycogen, for example the Nereid (worm)s and some polychaetes,[9] or the juvenile Trichinella spiralis (pork worm) parasites.[10])
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「嫌気性グラム陰性菌」 |
関連記事 | 「negative」「anaerobic」「Gram-negative anaerobic bacteria」「anaerobic bacteria」 |
.