出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/07/14 11:12:12」(JST)
Air pollution is the introduction of particulates, biological molecules, or other harmful materials into Earth's atmosphere, causing disease, death to humans, damage to other living organisms such as food crops, or the natural or built environment. Air pollution may come from anthropogenic or natural sources.
The atmosphere is a complex natural gaseous system that is essential to support life on planet Earth. Stratospheric ozone depletion due to air pollution has been recognized as a threat to human health as well as to the Earth's ecosystems.
Indoor air pollution and urban air quality are listed as two of the world's worst toxic pollution problems in the 2008 Blacksmith Institute World's Worst Polluted Places report.[1] According to the 2014 WHO report, air pollution in 2012 caused the deaths of around 7 million people worldwide.[2]
Part of the nature series |
Weather |
---|
Calendar seasons |
|
Tropical seasons |
|
Storms |
|
Precipitation |
|
Topics |
|
Weather portal |
|
An air pollutant is a substance in the air that can have adverse effects on humans and the ecosystem. The substance can be solid particles, liquid droplets, or gases. A pollutant can be of natural origin or man-made. Pollutants are classified as primary or secondary. Primary pollutants are usually produced from a process, such as ash from a volcanic eruption. Other examples include carbon monoxide gas from motor vehicle exhaust, or the sulfur dioxide released from factories. Secondary pollutants are not emitted directly. Rather, they form in the air when primary pollutants react or interact. Ground level ozone is a prominent example of a secondary pollutant. Some pollutants may be both primary and secondary: they are both emitted directly and formed from other primary pollutants.
Major primary pollutants produced by human activity include:
Secondary pollutants include:
Minor air pollutants include:
Persistent organic pollutants (POPs) are organic compounds that are resistant to environmental degradation through chemical, biological, and photolytic processes. Because of this, they have been observed to persist in the environment, to be capable of long-range transport, bioaccumulate in human and animal tissue, biomagnify in food chains, and to have potentially significant impacts on human health and the environment.
There are various locations, activities or factors which are responsible for releasing pollutants into the atmosphere. These sources can be classified into two major categories.
Anthropogenic (man-made) sources:
These are mostly related to the burning of multiple types of fuel.
Natural sources:
Air pollutant emission factors are representative values that people attempt to relate the quantity of a pollutant released to the ambient air with an activity associated with the release of that pollutant. These factors are usually expressed as the weight of pollutant divided by a unit weight, volume, distance, or duration of the activity emitting the pollutant (e.g., kilograms of particulate emitted per tonne of coal burned). Such factors facilitate estimation of emissions from various sources of air pollution. In most cases, these factors are simply averages of all available data of acceptable quality, and are generally assumed to be representative of long-term averages.
There are 12 compounds in the list of POPs. Dioxins and furans are two of them and intentionally created by combustion of organics, like open burning of plastics. The POPs are also endocrine disruptors and can mutate the human genes.
The United States Environmental Protection Agency has published a compilation of air pollutant emission factors for a multitude of industrial sources.[11] The United Kingdom, Australia, Canada and many other countries have published similar compilations, as well as the European Environment Agency.[12][13][14][15]
Air pollution risk is a function of the hazard of the pollutant and the exposure to that pollutant. Air pollution exposure can be expressed for an individual, for certain groups (e.g. neighborhoods or children living in a county), or for entire populations. For example, one may want to calculate the exposure to a hazardous air pollutant for a geographic area, which includes the various microenvironments and age groups. This can be calculated[16] as an inhalation exposure. This would account for daily exposure in various settings (e.g. different indoor micro-environments and outdoor locations). The exposure needs to include different age and other demographic groups, especially infants, children, pregnant women and other sensitive subpopulations. The exposure to an air pollutant must integrate the concentrations of the air pollutant with respect to the time spent in each setting and the respective inhalation rates for each subgroup for each specific time that the subgroup is in the setting and engaged in particular activities (playing, cooking, reading, working, etc.). For example, a small child's inhalation rate will be less than that of an adult. A child engaged in vigorous exercise will have a higher respiration rate than the same child in a sedentary activity. The daily exposure, then, needs to reflect the time spent in each micro-environmental setting and the type of activities in these settings. The air pollutant concentration in each microactivity/microenvironmental setting is summed to indicate the exposure.[16]
A lack of ventilation indoors concentrates air pollution where people often spend the majority of their time. Radon (Rn) gas, a carcinogen, is exuded from the Earth in certain locations and trapped inside houses. Building materials including carpeting and plywood emit formaldehyde (H2CO) gas. Paint and solvents give off volatile organic compounds (VOCs) as they dry. Lead paint can degenerate into dust and be inhaled. Intentional air pollution is introduced with the use of air fresheners, incense, and other scented items. Controlled wood fires in stoves and fireplaces can add significant amounts of smoke particulates into the air, inside and out.[17] Indoor pollution fatalities may be caused by using pesticides and other chemical sprays indoors without proper ventilation.
Carbon monoxide (CO) poisoning and fatalities are often caused by faulty vents and chimneys, or by the burning of charcoal indoors. Chronic carbon monoxide poisoning can result even from poorly-adjusted pilot lights. Traps are built into all domestic plumbing to keep sewer gas and hydrogen sulfide, out of interiors. Clothing emits tetrachloroethylene, or other dry cleaning fluids, for days after dry cleaning.
Though its use has now been banned in many countries, the extensive use of asbestos in industrial and domestic environments in the past has left a potentially very dangerous material in many localities. Asbestosis is a chronic inflammatory medical condition affecting the tissue of the lungs. It occurs after long-term, heavy exposure to asbestos from asbestos-containing materials in structures. Sufferers have severe dyspnea (shortness of breath) and are at an increased risk regarding several different types of lung cancer. As clear explanations are not always stressed in non-technical literature, care should be taken to distinguish between several forms of relevant diseases. According to the World Health Organisation (WHO), these may defined as; asbestosis, lung cancer, and Peritoneal Mesothelioma (generally a very rare form of cancer, when more widespread it is almost always associated with prolonged exposure to asbestos).
Biological sources of air pollution are also found indoors, as gases and airborne particulates. Pets produce dander, people produce dust from minute skin flakes and decomposed hair, dust mites in bedding, carpeting and furniture produce enzymes and micrometre-sized fecal droppings, inhabitants emit methane, mold forms on walls and generates mycotoxins and spores, air conditioning systems can incubate Legionnaires' disease and mold, and houseplants, soil and surrounding gardens can produce pollen, dust, and mold. Indoors, the lack of air circulation allows these airborne pollutants to accumulate more than they would otherwise occur in nature.
Air pollution is a significant risk factor for a number of health conditions including respiratory infections, heart disease, COPD, stroke and lung cancer.[2] The health effects caused by air pollution may include difficulty in breathing, wheezing, coughing, asthma and worsening of existing respiratory and cardiac conditions. These effects can result in increased medication use, increased doctor or emergency room visits, more hospital admissions and premature death. The human health effects of poor air quality are far reaching, but principally affect the body's respiratory system and the cardiovascular system. Individual reactions to air pollutants depend on the type of pollutant a person is exposed to, the degree of exposure, and the individual's health status and genetics.[16] The most common sources of air pollution include particulates, ozone, nitrogen dioxide, and sulfur dioxide. Children aged less than five years that live in developing countries are the most vulnerable population in terms of total deaths attributable to indoor and outdoor air pollution.[18]
It is estimated that some 7 million premature deaths may be attributed to air pollution.[2] India has the highest death rate due to air pollution.[19] India also has more deaths from asthma than any other nation according to the World Health Organisation. In December 2013 air pollution was estimated to kill 500,000 people in China each year.[20] There is a correlation between pneumonia-related deaths and air pollution from motor vehicles.[21]
Air pollution is estimated to reduce life expectancy by almost nine months across the European Union.[22] Causes of deaths include strokes, heart disease, COPD, lung cancer, and lung infections.[2]
The US EPA estimates that a proposed set of changes in diesel engine technology (Tier 2) could result in 12,000 fewer premature mortalities, 15,000 fewer heart attacks, 6,000 fewer emergency room visits by children with asthma, and 8,900 fewer respiratory-related hospital admissions each year in the United States.[23]
The US EPA estimates allowing a ground-level ozone concentration of 65 parts per billion, would avert 1,700 to 5,100 premature deaths nationwide in 2020 compared with the current 75-ppb standard. The agency projects the stricter standard would also prevent an additional 26,000 cases of aggravated asthma, and more than a million cases of missed work or school.[24][25]
A new economic study of the health impacts and associated costs of air pollution in the Los Angeles Basin and San Joaquin Valley of Southern California shows that more than 3,800 people die prematurely (approximately 14 years earlier than normal) each year because air pollution levels violate federal standards. The number of annual premature deaths is considerably higher than the fatalities related to auto collisions in the same area, which average fewer than 2,000 per year.[26][27][28]
Diesel exhaust (DE) is a major contributor to combustion-derived particulate matter air pollution. In several human experimental studies, using a well-validated exposure chamber setup, DE has been linked to acute vascular dysfunction and increased thrombus formation.[29][30] This serves as a plausible mechanistic link between the previously described association between particulates air pollution and increased cardiovascular morbidity and mortality.[citation needed]
A 2007 review of evidence found ambient air pollution exposure is a risk factor correlating with increased total mortality from cardiovascular events (range: 12% to 14% per 10 microg/m3 increase).[31]
Air pollution is also emerging as a risk factor for stroke, particularly in developing countries where pollutant levels are highest.[32] A 2007 study found that in women, air pollution is associated not with hemorrhagic but with ischemic stroke.[33] Air pollution was also found to be associated with increased incidence and mortality from coronary stroke in a cohort study in 2011.[34] Associations are believed to be causal and effects may be mediated by vasoconstriction, low-grade inflammation and atherosclerosis[35] Other mechanisms such as autonomic nervous system imbalance have also been suggested.[36] [37]
Chronic obstructive pulmonary disease (COPD) includes diseases such as chronic bronchitis and emphysema.[38]
Research has demonstrated increased risk of developing asthma[39] and COPD[40] from increased exposure to traffic-related air pollution. Additionally, air pollution has been associated with increased hospitalization and mortality from asthma and COPD.[41][42]
A study conducted in 1960-1961 in the wake of the Great Smog of 1952 compared 293 London residents with 477 residents of Gloucester, Peterborough, and Norwich, three towns with low reported death rates from chronic bronchitis. All subjects were male postal truck drivers aged 40 to 59. Compared to the subjects from the outlying towns, the London subjects exhibited more severe respiratory symptoms (including cough, phlegm, and dyspnea), reduced lung function (FEV1 and peak flow rate), and increased sputum production and purulence. The differences were more pronounced for subjects aged 50 to 59. The study controlled for age and smoking habits, so concluded that air pollution was the most likely cause of the observed differences.[43]
It is believed that much like cystic fibrosis, by living in a more urban environment serious health hazards become more apparent. Studies have shown that in urban areas patients suffer mucus hypersecretion, lower levels of lung function, and more self-diagnosis of chronic bronchitis and emphysema.[44]
A review of evidence regarding whether ambient air pollution exposure is a risk factor for cancer in 2007 found solid data to conclude that long-term exposure to PM2.5 (fine particulates) increases the overall risk of non-accidental mortality by 6% per a 10 microg/m3 increase. Exposure to PM2.5 was also associated with an increased risk of mortality from lung cancer (range: 15% to 21% per 10 microg/m3 increase) and total cardiovascular mortality (range: 12% to 14% per a 10 microg/m3 increase). The review further noted that living close to busy traffic appears to be associated with elevated risks of these three outcomes --- increase in lung cancer deaths, cardiovascular deaths, and overall non-accidental deaths. The reviewers also found suggestive evidence that exposure to PM2.5 is positively associated with mortality from coronary heart diseases and exposure to SO2 increases mortality from lung cancer, but the data was insufficient to provide solid conclusions.[45] Another investigation showed that higher activity level increases deposition fraction of aerosol particles in human lung and recommended avoiding heavy activities like running in outdoor space at polluted areas.[46]
In 2011, a large Danish epidemiological study found an increased risk of lung cancer for patients who lived in areas with high nitrogen oxide concentrations. In this study, the association was higher for non-smokers than smokers.[47] An additional Danish study, also in 2011, likewise noted evidence of possible associations between air pollution and other forms of cancer, including cervical cancer and brain cancer.[48]
In the United States, despite the passage of the Clean Air Act in 1970, in 2002 at least 146 million Americans were living in non-attainment areas—regions in which the concentration of certain air pollutants exceeded federal standards.[49] These dangerous pollutants are known as the criteria pollutants, and include ozone, particulate matter, sulfur dioxide, nitrogen dioxide, carbon monoxide, and lead. Protective measures to ensure children's health are being taken in cities such as New Delhi, India where buses now use compressed natural gas to help eliminate the "pea-soup" smog.[50] A recent study in Europe has found that exposure to ultrafine particles can increase blood pressure in children.[51]
Even in the areas with relatively low levels of air pollution, public health effects can be significant and costly, since a large number of people breathe in such pollutants. A 2005 scientific study for the British Columbia Lung Association showed that a small improvement in air quality (1% reduction of ambient PM2.5 and ozone concentrations) would produce $29 million in annual savings in the Metro Vancouver region in 2010.[52] This finding is based on health valuation of lethal (death) and sub-lethal (illness) affects.
Data is accumulating that air pollution exposure also affects the central nervous system.[53]
In a June 2014 study conducted by researchers at the University of Rochester Medical Center, published in the journal Environmental Health Perspectives, it was discovered that early exposure to air pollution causes the same damaging changes in the brain as autism and schizophrenia. The study also shows that air pollution also affected short-term memory, learning ability, and impulsivity. Lead researcher Professor Deborah Cory-Slechta said that "When we looked closely at the ventricles, we could see that the white matter that normally surrounds them hadn't fully developed. It appears that inflammation had damaged those brain cells and prevented that region of the brain from developing, and the ventricles simply expanded to fill the space. Our findings add to the growing body of evidence that air pollution may play a role in autism, as well as in other neurodevelopmental disorders." Air pollution has a more significant negative effect of males than on females.[54][55][56]
In India in 2014, it was reported that air pollution had cut crop yields in the most affected areas by almost half in 2010 when compared to 1980 levels.[57]
The world's worst short-term civilian pollution crisis was the 1984 Bhopal Disaster in India.[58] Leaked industrial vapours from the Union Carbide factory, belonging to Union Carbide, Inc., U.S.A. (later bought by Dow Chemical Company), killed more than 25,000 people outright and injured anywhere from 150,000 to 600,000. The United Kingdom suffered its worst air pollution event when the December 4 Great Smog of 1952 formed over London. In six days more than 4,000 died and more recent estimates put the figure at nearer 12,000.[59] An accidental leak of anthrax spores from a biological warfare laboratory in the former USSR in 1979 near Sverdlovsk is believed to have caused at least 64 deaths.[60] The worst single incident of air pollution to occur in the US occurred in Donora, Pennsylvania in late October, 1948, when 20 people died and over 7,000 were injured.[61]
There are various air pollution control technologies and land-use planning strategies available to reduce air pollution.[62][63] At its most basic level, land-use planning is likely to involve zoning and transport infrastructure planning. In most developed countries, land-use planning is an important part of social policy, ensuring that land is used efficiently for the benefit of the wider economy and population, as well as to protect the environment.
Because a large share of air pollution is caused by combustion of fossil fuels such as coal and oil, the reduction of these fuels can reduce air pollution drastically. Most effective is the switch to clean power sources such as wind power, solar power, hydro power which don't cause air pollution.[64] Efforts to reduce pollution from mobile sources includes primary regulation (many developing countries have permissive regulations),[citation needed] expanding regulation to new sources (such as cruise and transport ships, farm equipment, and small gas-powered equipment such as string trimmers, chainsaws, and snowmobiles), increased fuel efficiency (such as through the use of hybrid vehicles), conversion to cleaner fuels or conversion to electric vehicles).
Titanium dioxide has been researched for its ability to reduce air pollution. Ultraviolet light will release free electrons from material, thereby creating free radicals, which break up VOCs and NOx gases. One form is superhydrophilic.[65]
In 2014, Prof. Tony Ryan and Prof. Simon Armitage of University of Sheffield prepared a 10 meter by 20 meter-sized poster coated with microscopic, pollution-eating nanoparticles of titanium dioxide. Placed on a building, this giant poster can absorb the toxic emission from around 20 cars each day.[66]
A very effective means to reduce air pollution ist the transition to renewable energy. According to study that was published in Energy and Environmental Science in 2015 the switch to 100% renewable energy in the United States would eliminate about 62000 premature mortalities per year nowadays and about 42000 in 2050, if no biomass would be used. This would save about $600 Billion Dollars health costs a year due to reduced air pollution in 2050, or about 3.6% of the 2014 U.S. gross domestic product.[64]
The following items are commonly used as pollution control devices in industry and transportation. They can either destroy contaminants or remove them from an exhaust stream before it is emitted into the atmosphere.
In general, there are two types of air quality standards. The first class of standards (such as the U.S. National Ambient Air Quality Standards and E.U. Air Quality Directive) set maximum atmospheric concentrations for specific pollutants. Environmental agencies enact regulations which are intended to result in attainment of these target levels. The second class (such as the North American Air Quality Index) take the form of a scale with various thresholds, which is used to communicate to the public the relative risk of outdoor activity. The scale may or may not distinguish between different pollutants.
In Canada, air pollution and associated health risks are measured with the Air Quality Health Index or (AQHI). It is a health protection tool used to make decisions to reduce short-term exposure to air pollution by adjusting activity levels during increased levels of air pollution.
The Air Quality Health Index or "AQHI" is a federal program jointly coordinated by Health Canada and Environment Canada. However, the AQHI program would not be possible without the commitment and support of the provinces, municipalities and NGOs. From air quality monitoring to health risk communication and community engagement, local partners are responsible for the vast majority of work related to AQHI implementation. The AQHI provides a number from 1 to 10+ to indicate the level of health risk associated with local air quality. Occasionally, when the amount of air pollution is abnormally high, the number may exceed 10. The AQHI provides a local air quality current value as well as a local air quality maximums forecast for today, tonight and tomorrow and provides associated health advice.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | + |
Risk: | Low (1-3) | Moderate (4-6) | High (7-10) | Very high (above 10) |
As it is now known that even low levels of air pollution can trigger discomfort for the sensitive population, the index has been developed as a continuum: The higher the number, the greater the health risk and need to take precautions. The index describes the level of health risk associated with this number as 'low', 'moderate', 'high' or 'very high', and suggests steps that can be taken to reduce exposure.[67]
Health Risk | Air Quality Health Index | Health Messages[68] | |
---|---|---|---|
At Risk population | General Population | ||
Low | 1-3 | Enjoy your usual outdoor activities. | Ideal air quality for outdoor activities |
Moderate | 4-6 | Consider reducing or rescheduling strenuous activities outdoors if you are experiencing symptoms. | No need to modify your usual outdoor activities unless you experience symptoms such as coughing and throat irritation. |
High | 7-10 | Reduce or reschedule strenuous activities outdoors. Children and the elderly should also take it easy. | Consider reducing or rescheduling strenuous activities outdoors if you experience symptoms such as coughing and throat irritation. |
Very high | Above 10 | Avoid strenuous activities outdoors. Children and the elderly should also avoid outdoor physical exertion. | Reduce or reschedule strenuous activities outdoors, especially if you experience symptoms such as coughing and throat irritation. |
The measurement is based on the observed relationship of Nitrogen Dioxide (NO2), ground-level Ozone (O3) and particulates (PM2.5) with mortality, from an analysis of several Canadian cities. Significantly, all three of these pollutants can pose health risks, even at low levels of exposure, especially among those with pre-existing health problems.
When developing the AQHI, Health Canada's original analysis of health effects included five major air pollutants: particulates, ozone, and nitrogen dioxide (NO2), as well as sulfur dioxide (SO2), and carbon monoxide (CO). The latter two pollutants provided little information in predicting health effects and were removed from the AQHI formulation.
The AQHI does not measure the effects of odour, pollen, dust, heat or humidity.
TA Luft is the German air quality regulation.
Air pollution hotspots are areas where air pollution emissions expose individuals to increased negative health effects.[69] They are particularly common in highly populated, urban areas, where there may be a combination of stationary sources (e.g. industrial facilities) and mobile sources (e.g. cars and trucks) of pollution. Emissions from these sources can cause respiratory disease, childhood asthma, cancer, and other health problems. Fine particulate matter such as diesel soot, which contributes to more than 3.2 million premature deaths around the world each year, is a significant problem. It is very small and can lodge itself within the lungs and enter the bloodstream. Diesel soot is concentrated in densely populated areas, and one in six people in the U.S. live near a diesel pollution hot spot.[70]
While air pollution hotspots affect a variety of populations, some groups are more likely to be located in hotspots. Previous studies have shown disparities in exposure to pollution by race and/or income. Hazardous land uses (toxic storage and disposal facilities, manufacturing facilities, major roadways) tend to be located where property values and income levels are low. Low socioeconomic status can be a proxy for other kinds of social vulnerability, including race, a lack of ability to influence regulation and a lack of ability to move to neighborhoods with less environmental pollution. These communities bear a disproportionate burden of environmental pollution and are more likely to face health risks such as cancer or asthma.[71]
Studies show that patterns in race and income disparities not only indicate a higher exposure to pollution but also higher risk of adverse health outcomes.[72] Communities characterized by low socioeconomic status and racial minorities can be more vulnerable to cumulative adverse health impacts resulting from elevated exposure to pollutants than more privileged communities.[72] Blacks and Latinos generally face more pollution than whites and Asians, and low-income communities bear a higher burden of risk than affluent ones.[71] Racial discrepancies are particularly distinct in suburban areas of the US South and metropolitan areas of the US West.[73][clarification needed] Residents in public housing, who are generally low-income and cannot move to healthier neighborhoods, are highly affected by nearby refineries and chemical plants.[74]
The factual accuracy of parts of this article (those related to the first two images in this section) may be compromised due to out-of-date information. Please update this article to reflect recent events or newly available information. (October 2013) |
Air pollution is usually concentrated in densely populated metropolitan areas, especially in developing countries where environmental regulations are relatively lax or nonexistent.[75] However, even populated areas in developed countries attain unhealthy levels of pollution, with Los Angeles and Rome being two examples.[76] Between 2002 and 2011 the incidence of lung cancer in Beijing near doubled. While smoking remains the leading cause of lung cancer in China, the number of smokers is falling while lung cancer rates are rising.[77]
The national-scale air toxics assessment(NATA) is an evaluation of air toxics by the U.S. EPA. EPA has furnished four assessments that characterize nationwide chronic cancer risk estimates and noncancer hazards from inhaling air toxics. The lates was from 2005, and made publicly available in early 2011.
"EPA developed the NATA as a state-of-the-science screening tool for State/Local/Tribal Agencies to prioritize pollutants, emission sources and locations of interest for further study, in order to gain a better understanding of the risks. NATA assessments do not incorporate refined information about emission sources, but rather, use general information about sources to develop estimates of risks which are more likely to overestimate impacts than underestimate them. NATA provides estimates of the risk of cancer and other serious health effects from breathing (inhaling) air toxics in order to inform both national and more localized efforts to identify and prioritize air toxics, emission source types and locations which are of greatest potential concern in terms of contributing to population risk. This in turn helps air pollution experts focus limited analytical resources on areas and or populations where the potential for health risks are highest. Assessments include estimates of cancer and non-cancer health effects based on chronic exposure from outdoor sources, including assessments of non-cancer health effects for Diesel Particulate Matter. Assessments provide a snapshot of the outdoor air quality and the risks to human health that would result if air toxic emissions levels remained unchanged."[78]
Most polluted world cities by PM[79] | |
---|---|
Particulate matter, |
City |
168 | Cairo, Egypt |
150 | Delhi, India |
128 | Kolkata, India (Calcutta) |
125 | Tianjin, China |
123 | Chongqing, China |
109 | Kanpur, India |
109 | Lucknow, India |
104 | Jakarta, Indonesia |
101 | Shenyang, China |
In Europe, Council Directive 96/62/EC on ambient air quality assessment and management provides a common strategy against which member states can "set objectives for ambient air quality in order to avoid, prevent or reduce harmful effects on human health and the environment . . . and improve air quality where it is unsatisfactory".[80]
On 25 July 2008 in the case Dieter Janecek v Freistaat Bayern CURIA, the European Court of Justice ruled that under this directive[80] citizens have the right to require national authorities to implement a short term action plan that aims to maintain or achieve compliance to air quality limit values.[81]
This important case law appears to confirm the role of the EC as centralised regulator to European nation-states as regards air pollution control. It places a supranational legal obligation on the UK to protect its citizens from dangerous levels of air pollution, furthermore superseding national interests with those of the citizen.
In 2010, the European Commission (EC) threatened the UK with legal action against the successive breaching of PM10 limit values.[82] The UK government has identified that if fines are imposed, they could cost the nation upwards of £300 million per year.[83]
In March 2011, the Greater London Built-up Area remains the only UK region in breach of the EC's limit values, and has been given 3 months to implement an emergency action plan aimed at meeting the EU Air Quality Directive.[84] The City of London has dangerous levels of PM10 concentrations, estimated to cause 3000 deaths per year within the city.[85] As well as the threat of EU fines, in 2010 it was threatened with legal action for scrapping the western congestion charge zone, which is claimed to have led to an increase in air pollution levels.[86]
In response to these charges, Boris Johnson, Mayor of London, has criticised the current need for European cities to communicate with Europe through their nation state's central government, arguing that in future "A great city like London" should be permitted to bypass its government and deal directly with the European Commission regarding its air quality action plan.[84]
This can be interpreted as recognition that cities can transcend the traditional national government organisational hierarchy and develop solutions to air pollution using global governance networks, for example through transnational relations. Transnational relations include but are not exclusive to national governments and intergovernmental organisations,[87] allowing sub-national actors including cities and regions to partake in air pollution control as independent actors.
Particularly promising at present are global city partnerships.[88] These can be built into networks, for example the C40 Cities Climate Leadership Group, of which London is a member. The C40 is a public 'non-state' network of the world's leading cities that aims to curb their greenhouse emissions.[88] The C40 has been identified as 'governance from the middle' and is an alternative to intergovernmental policy.[89] It has the potential to improve urban air quality as participating cities "exchange information, learn from best practices and consequently mitigate carbon dioxide emissions independently from national government decisions".[88] A criticism of the C40 network is that its exclusive nature limits influence to participating cities and risks drawing resources away from less powerful city and regional actors.
This section does not cite any references or sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (December 2014) |
The basic technology for analyzing air pollution is through the use of a variety of mathematical models for predicting the transport of air pollutants in the lower atmosphere. The principal methodologies are:
The point source problem is the best understood, since it involves simpler mathematics and has been studied for a long period of time, dating back to about the year 1900. It uses a Gaussian dispersion model for continuous buoyant pollution plumes to predict the air pollution isopleths, with consideration given to wind velocity, stack height, emission rate and stability class (a measure of atmospheric turbulence).[90][91] This model has been extensively validated and calibrated with experimental data for all sorts of atmospheric conditions.
The roadway air dispersion model was developed starting in the late 1950s and early 1960s in response to requirements of the National Environmental Policy Act and the U.S. Department of Transportation (then known as the Federal Highway Administration) to understand impacts of proposed new highways upon air quality, especially in urban areas. Several research groups were active in this model development, among which were: the Environmental Research and Technology (ERT) group in Lexington, Massachusetts, the ESL Inc. group in Sunnyvale, California and the California Air Resources Board group in Sacramento, California. The research of the ESL group received a boost with a contract award from the United States Environmental Protection Agency to validate a line source model using sulfur hexafluoride as a tracer gas. This program was successful in validating the line source model developed by ESL Inc. Some of the earliest uses of the model were in court cases involving highway air pollution; the Arlington, Virginia portion of Interstate 66 and the New Jersey Turnpike widening project through East Brunswick, New Jersey.
Area source models were developed in 1971 through 1974 by the ERT and ESL groups, but addressed a smaller fraction of total air pollution emissions, so that their use and need was not as widespread as the line source model, which enjoyed hundreds of different applications as early as the 1970s. Similarly photochemical models were developed primarily in the 1960s and 1970s, but their use was more specialized and for regional needs, such as understanding smog formation in Los Angeles, California.
|
|
|
Wikimedia Commons has media related to Air pollution. |
|
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「大気汚染」 |
関連記事 | 「air」「pollution」「AIR」 |
.