MMP9 |
|
Available structures |
PDB |
Ortholog search: PDBe RCSB |
List of PDB id codes |
1GKC, 1GKD, 1ITV, 1L6J, 2OVX, 2OVZ, 2OW0, 2OW1, 2OW2, 4H1Q, 4H2E, 4H3X, 4H82, 4HMA, 4JIJ, 4JQG, 4WZV, 4XCT, 5CUH, 5I12
|
|
|
Identifiers |
Aliases |
MMP9, CLG4B, GELB, MANDP2, MMP-9, 92 kDa type IV collagenase, 92 kDa gelatinase, gelatinase B, matrix metallopeptidase 9 |
External IDs |
MGI: 97011 HomoloGene: 3659 GeneCards: 4318 |
Gene ontology |
Molecular function |
• collagen binding
• zinc ion binding
• metal ion binding
• peptidase activity
• protein binding
• identical protein binding
• hydrolase activity
• metallopeptidase activity
• endopeptidase activity
• serine-type endopeptidase activity
• metalloendopeptidase activity
|
Cellular component |
• extracellular matrix
• proteinaceous extracellular matrix
• extracellular space
• extracellular region
• extracellular exosome
|
Biological process |
• skeletal system development
• negative regulation of cation channel activity
• positive regulation of protein phosphorylation
• endodermal cell differentiation
• negative regulation of cysteine-type endopeptidase activity involved in apoptotic signaling pathway
• ossification
• negative regulation of intrinsic apoptotic signaling pathway
• ephrin receptor signaling pathway
• extracellular matrix disassembly
• negative regulation of apoptotic process
• proteolysis
• macrophage differentiation
• positive regulation of keratinocyte migration
• positive regulation of apoptotic process
• collagen catabolic process
• positive regulation of release of cytochrome c from mitochondria
• positive regulation of receptor binding
• positive regulation of DNA binding
• positive regulation of epidermal growth factor receptor signaling pathway
• embryo implantation
• leukocyte migration
• positive regulation of vascular smooth muscle cell proliferation
• extracellular matrix organization
|
Sources:Amigo / QuickGO |
|
RNA expression pattern |
|
More reference expression data |
Orthologs |
Species |
Human |
Mouse |
Entrez |
|
|
Ensembl |
|
|
UniProt |
|
|
RefSeq (mRNA) |
|
|
RefSeq (protein) |
|
|
Location (UCSC) |
Chr 20: 46.01 – 46.02 Mb |
Chr 2: 164.94 – 164.96 Mb |
PubMed search |
[1] |
[2] |
Wikidata |
View/Edit Human |
View/Edit Mouse |
Matrix metallopeptidase 9 (MMP-9), also known as 92 kDa type IV collagenase, 92 kDa gelatinase or gelatinase B (GELB), is a matrixin, a class of enzymes that belong to the zinc-metalloproteinases family involved in the degradation of the extracellular matrix. In humans the MMP9 gene [3] encodes for a signal peptide, a propeptide, a catalytic domain with inserted three repeats of fibronectin type II domain followed by a C-terminal hemopexin-like domain.[4]
Contents
- 1 Function
- 1.1 Neutrophil action
- 1.2 Angiogenesis
- 1.3 Wound repair
- 2 Structure
- 3 Clinical significance
- 3.1 Arthritis
- 3.2 Cancer
- 3.3 Cardiovascular
- 3.4 Pregnancy-associated malaria (Placental malaria)
- 4 References
- 5 Further reading
- 6 External links
Function
Proteins of the matrix metalloproteinase (MMP) family are involved in the breakdown of extracellular matrix in normal physiological processes, such as embryonic development, reproduction, angiogenesis, bone development, wound healing, cell migration, learning and memory, as well as in pathological processes, such as arthritis, intracerebral hemorrhage,[5] and metastasis.[6] Most MMPs are secreted as inactive proproteins which are activated when cleaved by extracellular proteinases. The enzyme encoded by this gene degrades type IV and V collagens and other extracellular matrix proteins.[7] Studies in rhesus monkeys suggest that the enzyme is involved in IL-8-induced mobilization of hematopoietic progenitor cells from bone marrow, and murine studies suggest a role in tumor-associated tissue remodeling.[3]
Thrombospondins, intervertebral disc proteins, regulate interaction with matrix metalloproteinases (MMPs) 2 and 9, which are key effectors of ECM remodeling.[8]
Neutrophil action
MMP9, along with elastase, appears to be a regulatory factor in neutrophil migration across the basement membrane.[9]
MMP9 plays several important functions within neutrophil action, such as degrading extracellular matrix, activation of IL-1β, and cleavage of several chemokines.[10] In a mouse model, MMP9 deficiency resulted in resistance to endotoxin shock, suggesting that MMP9 is important in sepsis.[11]
Angiogenesis
MMP9 may play an important role in angiogenesis and neovascularization. For example, MMP9 appears to be involved in the remodeling associated with malignant glioma neovascularization.[12] It is also a key regulator of growth plate formation- both growth plate angiogenesis and the generation of hypertrophic chondrocytes. Knock-out models of MMP9 result in delayed apoptosis, vascularization, and ossification of hypertrophic chondrocytes.[13] Lastly, there is significant evidence that Gelatinase B is required for the recruitment of endothelial stem cells, a critical component of angiogenesis [14]
Wound repair
MMP9 is greatly upregulated during human respiratory epithelial healing.[15] Using a MMP9 deficient mouse model, it was seen that MMP9 coordinated epithelial wound repair and deficient mice were unable to remove the fibrinogen matrix during wound healing.[16] When interacting with TGF-ß1, Gelatinase B also stimulates collagen contraction, aiding in wound closure.[17]
Structure
ProMMP9 (pro-peptide (red), catalytic domain (green) with fibronectin domains (cyan), with detail of the "cysteine switch" (from PDB entry 1L6J)
MMP9 is synthesized as preproenzyme of 707 amino-acid residues, including a 19 amino acid signal peptide and secreted as an inactive pro-MMP. The human MMP9 proenzyme consists of five domains. The amino-terminal propeptide, the zinc-binding catalytic domain and the carboxyl-terminal hemopexin-like domain are conserved. Its primary structure comprises several domain motifs. The propeptide domain is characterized by a conserved PRCGVPD sequence. The Cys within this sequence is known as the “cysteine switch”. It ligates the catalytic zinc to maintain the enzyme in an inactive state.[4]
MMP-9 catalytic domain in complex with a fluorogenic synthetic peptidic substrate. From PDB entry 4JIJ.
[18]
Activation is achieved through an interacting protease cascade involving plasmin and stromelysin 1 (MMP-3). Plasmin generates active MMP-3 from its zymogen. Active MMP-3 cleaves the propeptide from the 92-kDa pro-MMP-9, yielding an 82-kDa enzymatically active enzyme.[19] In the active enzyme a substrate, or a fluorogenic activity probe.,[18] replaces the propetide in the enzyme active site where it is cleaved. The catalytic domain contains two zinc and three calcium atoms. The catalytic zinc is coordinated by three histidines from the conserved HEXXHXXGXXH binding motif. The other zinc atom and the three calcium atoms are structural. A conserved methionine, which forms a unique “Met-turn” structure categorizes MMP9 as a metzincin.[20] Three type II fibronectin repeats are inserted in the catalytic domain, although these domains are omitted in most crystallographic structures of MMP9 in complex with inhibitors.The active form of MMP9 also contains a C-terminal hemopexin-like domain. This domain is ellipsoidal in shape, formed by four β-propeller blades and an α-helix. Each blade consists of four antiparallel β-strands arranged around a funnel-like tunnel that contains two calcium and two chloride ions.[21] The hemopexin domain is important to facilitate the cleavage of triple helical interstitial collagens. .
Clinical significance
MMP9 has been found to be associated with numerous pathological processes, including cancer, placental malaria, immunologic and cardiovascular diseases.
Arthritis
Elevated MMP9 levels can be found in the cases of rheumatoid arthritis[22] and focal brain ischemia.[23]
Cancer
One of MMP9's most widely associated pathologies is the relationship to cancer, due to its role in extracellular matrix remodeling and angiogenesis. For example, its increased expression was seen in a metastatic mammary cancer cell line.[24] Gelatinase B plays a central role in tumor progression, from angiogenesis, to stromal remodeling, and ultimately metastasis.[25] However, because of its physiologic function, it may be difficult to leverage Gelatinase B inhibition into cancer therapy modalities. However, Gelatinase B has been investigated in tumor metastasis diagnosis- Complexes of Gelatinase B/Tissue Inhibitors of Metalloproteinases are seen to be increased in gastrointestinal cancer and gynecologic malignancies [26]
MMPs such as MMP9 can be involved in the development of several human malignancies, as degradation of collagen IV in basement membrane and extracellular matrix facilitates tumor progression, including invasion, metastasis, growth and angiogenesis.[27]
Cardiovascular
MMP9 levels increase with the progression of idiopathic atrial fibrillation.[28]
MMP9 has been found to be associated with the development of aortic aneurysms,[29] and its disruption prevents the development of aortic aneurysms.[30] Doxycycline suppresses the growth of aortic aneurysms through its inhibition of MMP9.[31]
Pregnancy-associated malaria (Placental malaria)
A study on Ghanaian population showed that MMP-9 single nucleotide polymorphism 1562 C > T (rs3918242) was protective against placental malaria which suggests a possible role of MMP-9 in susceptibility to malaria.[32]
References
- ^ "Human PubMed Reference:".
- ^ "Mouse PubMed Reference:".
- ^ a b "Matrix metallopeptidase 9 (gelatinase B, 92kDa gelatinase, 92kDa type IV collagenase)".
- ^ a b Nagase H, Woessner JF (1999). "Matrix metalloproteinases". The Journal of Biological Chemistry. 274 (31): 21491–4. doi:10.1074/jbc.274.31.21491. PMID 10419448.
- ^ Wang J, Tsirka SE (2005). "Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage.". Brain. 128 (7): 1622–33. doi:10.1093/brain/awh489. PMID 15800021.
- ^ Van; Vandooren, J; den Steen, PE; Opdenakker, G. (2013). "Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9) The next decade". Crit Rev Biochem Mol Biol. 48 (3): 222–72. doi:10.3109/10409238.2013.770819. PMID 23547785.
- ^ Van; den Steen, PE; Dubois, B; Nelissen, I; Rudd, PM; Dwek, RA; Opdenakker, G (2002). "Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9)".". Crit Rev Biochem Mol Biol. 37 (6): 375–536. doi:10.1080/10409230290771546. PMID 12540195.
- ^ Hirose Y, Chiba K, Karasugi T, Nakajima M, Kawaguchi Y, Mikami Y, Furuichi T, Mio F, Miyake A, Miyamoto T, Ozaki K, Takahashi A, Mizuta H, Kubo T, Kimura T, Tanaka T, Toyama Y, Ikegawa S (May 2008). "A Functional Polymorphism in THBS2 that Affects Alternative Splicing and MMP Binding Is Associated with Lumbar-Disc Herniation". Am. J. Hum. Genet. 82 (5): 1122–9. doi:10.1016/j.ajhg.2008.03.013. PMC 2427305. PMID 18455130.
- ^ Delclaux C, Delacourt C, D'Ortho MP, Boyer V, Lafuma C, Harf A (1996). "Role of gelatinase B and elastase in human polymorphonuclear neutrophil migration across basement membrane". Am. J. Respir. Cell Mol. Biol. 14 (3): 288–95. doi:10.1165/ajrcmb.14.3.8845180. PMID 8845180.
- ^ Opdenakker G, Van den Steen PE, Dubois B, Nelissen I, Van Coillie E, Masure S, Proost P, Van Damme J (2001). "MMP9 functions as regulator and effector in leukocyte biology". Journal of Leukocyte Biology. 69 (6): 851–9. PMID 11404367.
- ^ Dubois B; Starckx S; Pagenstecher A; Oord Jv; Arnold B; Opdenakker G (2002). "MMP9 deficiency protects against endotoxin shock". Eur. J. Immunol. 32 (8): 2163–71. doi:10.1002/1521-4141(200208)32:8<2163::AID-IMMU2163>3.0.CO;2-Q. PMID 12209628.
- ^ Forsyth PA, Wong H, Laing TD, Rewcastle NB, Morris DG, Muzik H, Leco KJ, Johnston RN, Brasher PM, Sutherland G, Edwards DR (1999). "Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas". British Journal of Cancer. 79 (11-12): 1828–35. doi:10.1038/sj.bjc.6690291. PMC 2362801. PMID 10206300.
- ^ Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM, Werb Z (1998). "MMP-9/Gelatinase B Is a Key Regulator of Growth Plate Angiogenesis and Apoptosis of Hypertrophic Chondrocytes". Cell. 93 (3): 411–22. doi:10.1016/s0092-8674(00)81169-1. PMC 2839071. PMID 9590175.
- ^ Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S (2002). "Recruitment of Stem and Progenitor Cells from the Bone Marrow Niche Requires MMP-9 Mediated Release of Kit-Ligand". Cell. 109 (5): 625–37. doi:10.1016/s0092-8674(02)00754-7. PMC 2826110. PMID 12062105.
- ^ Buisson AC, Zahm JM, Polette M, Pierrot D, Bellon G, Puchelle E, Birembaut P, Tournier JM (1996). "MMP9 is involved in the in vitro wound repair of human respiratory epithelium". Journal of Cellular Physiology. 166 (2): 413–26. doi:10.1002/(sici)1097-4652(199602)166:2<413::aid-jcp20>3.0.co;2-a. PMID 8592002.
- ^ Mohan R, Chintala SK, Jung JC, Villar WV, McCabe F, Russo LA, Lee Y, McCarthy BE, Wollenberg KR, Jester JV, Wang M, Welgus HG, Shipley JM, Senior RM, Fini ME (2001). "Matrix metalloproteinase gelatinase B (MMP-9) coordinates and effects epithelial regeneration". The Journal of Biological Chemistry. 277 (3): 2065–72. doi:10.1074/jbc.m107611200. PMID 11689563.
- ^ Kobayashi T, Kim H, Liu X, Sugiura H, Kohyama T, Fang Q, Wen FQ, Abe S, Wang X, Atkinson JJ, Shipley JM, Senior RM, Rennard SI (2014). "Matrix metalloproteinase-9 activates TGF-ss and stimulates fibroblast contraction of collagen gels". American Journal of Physiology. Lung Cellular and Molecular Physiology. 306 (11): L1006–15. doi:10.1152/ajplung.00015.2014. PMID 24705725.
- ^ a b Tranchant I, Vera L, Czarny B, Amoura M, Cassar E, Beau F, Stura EA, Dive V (2014). "Halogen bonding controls selectivity of FRET substrate probes for MMP-9". chemistry & Biology. 21 (3): 408–413. doi:10.1016/j.chembiol.2014.01.008. PMID 24583051.
- ^ Ramos-DeSimone N, Hahn-Dantona E, Sipley J, Nagase H, French DL, Quigley JP (1999). "Activation of Matrix Metalloproteinase-9 (MMP-9) via a Converging Plasmin/Stromelysin-1 Cascade Enhances Tumor Cell Invasion". The Journal of Biological Chemistry. 274 (19): 13066–13076. doi:10.1074/jbc.274.19.13066. PMID 10224058.
- ^ Bode W, Gomis-Rüth FX, Stöckler W (1993). "Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the 'metzincins'". FEBS Lett. 331 (1-2): 134–140. doi:10.1016/0014-5793(93)80312-I. PMID 8405391.
- ^ Gomis-Rüth FX, Gohlke U, Betz M, Knäuper V, Murphy G, López-Otín C, Bode W (1996). "The helping hand of collagenase-3 (MMP-13): 2.7 A crystal structure of its C-terminal haemopexin-like domain.". J. Mol. Biol. 264 (3): 556–566. doi:10.1006/jmbi.1996.0661. PMID 8969305.
- ^ Gruber BL, Sorbi D, French DL, Marchese MJ, Nuovo GJ, Kew RR, Arbeit LA (1996). "Markedly Elevated Serum MMP-9 (Gelatinase B) Levels in Rheumatoid Arthritis: A Potentially Useful Laboratory Marker". Clinical Immunology and Immunopathology. 78 (2): 161–71. doi:10.1006/clin.1996.0025. PMID 8625558.
- ^ Clark AW, Krekoski CA, Bou SS, Chapman KR, Edwards DR (1997). "Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia". Neuroscience Letters. 238 (1-2): 53–6. doi:10.1016/s0304-3940(97)00859-8. PMID 9464653.
- ^ Morini M, Mottolese M, Ferrari N, Ghiorzo F, Buglioni S, Mortarini R, Noonan DM, Natali PG, Albini A (2000). "The α3β1 integrin is associated with mammary carcinoma cell metastasis, invasion, and gelatinase B (mmp-9) activity". International Journal of Cancer. 87 (3): 336–42. doi:10.1002/1097-0215(20000801)87:3<336::aid-ijc5>3.3.co;2-v. PMID 10897037.
- ^ Farina AR, Mackay AR (2014). "Gelatinase B/MMP-9 in Tumour Pathogenesis and Progression". Cancers (Basel). 6 (1): 240–96. doi:10.3390/cancers6010240. PMC 3980597. PMID 24473089.
- ^ Zucker S, Lysik RM, DiMassimo BI, Zarrabi HM, Moll UM, Grimson R, Tickle SP, Docherty AJ (1995). "Plasma assay of gelatinase B: tissue inhibitor of metalloproteinase complexes in cancer". Cancer. 76 (4): 700–708. doi:10.1002/1097-0142(19950815)76:4<700::aid-cncr2820760426>3.0.co;2-5. PMID 8625169.
- ^ Groblewska M, Siewko M, Mroczko B, Szmitkowski M (2012). "The role of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) in the development of esophageal cancer". Folia Histochem. Cytobiol. 50 (1): 12–9. doi:10.2478/18691. PMID 22532131.
- ^ Li M, Yang G, Xie B, Babu K, Huang C (2014). "Changes in matrix metalloproteinase-9 levels during progression of atrial fibrillation". J. Int. Med. Res. 42 (1): 224–30. doi:10.1177/0300060513488514. PMID 24345823.
- ^ Newman KM, Ogata Y, Malon AM, Irizarry E, Gandhi RH, Nagase H, Tilson MD (1994). "Identification of matrix metalloproteinases 3 (stromelysin-1) and 9 (gelatinase B) in abdominal aortic aneurysm.". Arteriosclerosis and thrombosis: a journal of vascular biology. 14 (8): 1315–20. doi:10.1161/01.atv.14.8.1315. PMID 8049193.
- ^ Pyo R, Lee JK, Shipley JM, Curci JA, Mao D, Ziporin SJ, Ennis TL, Shapiro SD, Senior RM, Thompson RW (2000). "Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms". The Journal of Clinical Investigation. 105 (11): 1641–9. doi:10.1172/jci8931. PMC 300851. PMID 10841523.
- ^ Lindeman JH, Abdul-Hussien H, van Bockel JH, Wolterbeek R, Kleemann R (April 2009). "Clinical trial of doxycycline for matrix metalloproteinase-9 inhibition in patients with an abdominal aneurysm: doxycycline selectively depletes aortic wall neutrophils and cytotoxic T cells". Circulation. 119 (16): 2209–16. doi:10.1161/CIRCULATIONAHA.108.806505. PMID 19364980.
- ^ Apoorv TS, Babu PP, Meese S, Gai PP, Bedu-Addo G, Mockenhaupt FP (2015). "Matrix Metalloproteinase-9 polymorphism 1562 C > T (rs3918242) associated with protection against placental malaria.". American Journal of Tropical Medicine and Hygiene. 93 (1): 186–188. doi:10.4269/ajtmh.14-0816. PMC 4497894. PMID 26013370.
Further reading
- Nagase H, Woessner JF (1999). "Matrix metalloproteinases". J. Biol. Chem. 274 (31): 21491–4. doi:10.1074/jbc.274.31.21491. PMID 10419448.
- Zhao X, Wu T, Chang CF, et al. (2015). "Toxic role of prostaglandin E2 receptor EP1 after intracerebral hemorrhage in mice.". Brain Behav Immun. 46: 293–310. doi:10.1016/j.bbi.2015.02.011. PMID 25697396.
- Starckx S, Van den Steen PE, Wuyts A, Van Damme J, Opdenakker G (2003). "Neutrophil gelatinase B and chemokines in leukocytosis and stem cell mobilization". Leuk. Lymphoma. 43 (2): 233–41. doi:10.1080/10428190290005982. PMID 11999552.
- Wu H, Zhang Z, Li Y, Zhao R, Li H, Song Y, Qi J, Wang J (2010). "Time course of upregulation of inflammatory mediators in the hemorrhagic brain in rats: correlation with brain edema". Neurochem Int. 57 (3): 248–53. doi:10.1016/j.neuint.2010.06.002. PMID 20541575.
- Bischof P, Meisser A, Campana A (2002). "Control of MMP-9 expression at the maternal-fetal interface". J. Reprod. Immunol. 55 (1–2): 3–10. doi:10.1016/S0165-0378(01)00142-5. PMID 12062817.
- St-Pierre Y, Van Themsche C, Estève PO (2003). "Emerging features in the regulation of MMP-9 gene expression for the development of novel molecular targets and therapeutic strategies". Current drug targets. Inflammation and allergy. 2 (3): 206–15. doi:10.2174/1568010033484133. PMID 14561155.
- Lee JM, Yin K, Hsin I, Chen S, Fryer JD, Holtzman DM, Hsu CY, Xu J (2005). "Matrix metalloproteinase-9 in cerebral-amyloid-angiopathy-related hemorrhage". J. Neurol. Sci. 229-230: 249–54. doi:10.1016/j.jns.2004.11.041. PMID 15760647.
- Nair RR, Boyd DD (2006). "Expression cloning of novel regulators of 92 kDa type IV collagenase expression". Biochem. Soc. Trans. 33 (Pt 5): 1135–6. doi:10.1042/BST20051135. PMID 16246065.
- Wu H, Zhang Z, Hu X, Zhao R, Song Y, Ban X, Qi J, Wang J (2010). "Dynamic changes of inflammatory markers in brain after hemorrhagic stroke in humans: a postmortem study". Brain Res. 1342: 111–7. doi:10.1016/j.brainres.2010.04.033. PMC 2885522. PMID 20420814.
- Wu H, Wu T, Han X, Wan J, et al. (2016). "Cerebroprotection by the neuronal PGE2 receptor EP2 after intracerebral hemorrhage in middle-aged mice.". J Cereb Blood Flow Metab. doi:10.1177/0271678X15625351. PMID 26746866.
- Ram M, Sherer Y, Shoenfeld Y (2006). "Matrix metalloproteinase-9 and autoimmune diseases". J. Clin. Immunol. 26 (4): 299–307. doi:10.1007/s10875-006-9022-6. PMID 16652230.
External links
- The MEROPS online database for peptidases and their inhibitors: M10.009
PDB gallery
|
|
|
1itv: Dimeric form of the haemopexin domain of MMP9
|
|
1l6j: Crystal structure of human matrix metalloproteinase MMP9 (gelatinase B).
|
|
|
Proteases: metalloendopeptidases (EC 3.4.24)
|
|
ADAM proteins |
- Alpha secretases
- ADAM9
- ADAM10
- ADAM17
- ADAM19
- ADAM2
- ADAM7
- ADAM8
- ADAM11
- ADAM12
- ADAM15
- ADAM18
- ADAM22
- ADAM23
- ADAM28
- ADAM33
- ADAMTS1
- ADAMTS2
- ADAMTS3
- ADAMTS4
- ADAMTS5
- ADAMTS8
- ADAMTS9
- ADAMTS10
- ADAMTS12
- ADAMTS13
|
|
Matrix metalloproteinases |
- Collagenases
- Gelatinases
- MMP3
- MMP7
- MMP10
- MMP11
- MMP12
- MMP13
- MMP14
- MMP15
- MMP16
- MMP17
- MMP19
- MMP20
- MMP21
- MMP23A
- MMP23B
- MMP24
- MMP25
- MMP26
- MMP27
- MMP28
|
|
Other |
- Neprilysin
- Procollagen peptidase
- Thermolysin
- Pregnancy-associated plasma protein A
- Bone morphogenetic protein 1
- Lysostaphin
- Insulin-degrading enzyme
- ZMPSTE24
|
Enzymes
|
|
Activity |
- Active site
- Binding site
- Catalytic triad
- Oxyanion hole
- Enzyme promiscuity
- Catalytically perfect enzyme
- Coenzyme
- Cofactor
- Enzyme catalysis
- Enzyme kinetics
- Lineweaver–Burk plot
- Michaelis–Menten kinetics
|
|
Regulation |
- Allosteric regulation
- Cooperativity
- Enzyme inhibitor
|
|
Classification |
- EC number
- Enzyme superfamily
- Enzyme family
- List of enzymes
|
|
Types |
- EC1 Oxidoreductases(list)
- EC2 Transferases(list)
- EC3 Hydrolases(list)
- EC4 Lyases(list)
- EC5 Isomerases(list)
- EC6 Ligases(list)
|