国際放射線防護委員会 International Commission on Radiological Protection
出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/12/02 13:25:02」(JST)
国際放射線防護委員会(こくさいほうしゃせんぼうごいいんかい、英: International Commission on Radiological Protection、ICRP)は、専門家の立場から放射線防護に関する勧告を行う民間の国際学術組織である[1]。ICRPはイギリスの非営利団体(NPO)として公認の慈善団体であり、科学事務局の所在地はカナダのオタワに設けられている[2]。 助成金の拠出機関は、国際原子力機関や経済協力開発機構原子力機関などの原子力機関をはじめ、世界保健機構、ISRや国際放射線防護学会(International Radiation Protection Association; IRPA)などの放射線防護に関する学会、イギリス、アメリカ、欧州共同体、スウェーデン、日本、アルゼンチン、カナダなどの各国内にある機関からなされている[1]。
医学分野で放射線の影響に対する懸念の高まりを受けて、1928年にスウェーデンのストックホルムで国際放射線学会(International Society of Radiology; ISR)の主催により開かれた第2回国際放射線医学会議(International Congress of Radiology; ICR)において放射線医学の専門家を中心として「国際X線およびラジウム防護委員会」(International X-ray and Radium Protection Committee; IXRPC)が創設され[3]、X線とラジウムへの過剰暴露の危険性に対して勧告が行われた[4]。
1950年にロンドンで開かれたICR[5]にて、医学分野以外での使用もよく考慮するために組織を再構築し、現在の名称「International Commission on Radiological Protection; ICR」に改称された[3]。スウェーデン国立放射線防護研究所の所長であったロルフ・マキシミリアン・シーベルトは1929年にIXRPCの委員に就任し、ICRPに改組後も1958年から1962年まで委員長を務めた[6]。
ICRPは主委員会と5つの専門委員会 (Committee) からなり、必要に応じてタスク(課題)グループが作られる。
ICRPの刊行物のリストはICRPのサイトで閲覧可能[7]。
批判には、その基準が緩過ぎるとする批判、逆に厳し過ぎる、あるいは間違っているとするものまである。
IXRPCからICRPに再構築された際に、放射線医学、放射線遺伝学の専門家以外に原子力関係の専門家も委員に加わるようになり、ある限度の放射線被曝を正当化しようとする勢力の介入によって委員会の性格は変質していったとの指摘がある[8]。ICRPに改組されてから、核実験や原子力利用を遂行するにあたり、一般人に対する基準が設けられ、1954年には暫定線量限度、1958年には線量限度が勧告で出され、許容線量でないことは強調されたが、一般人に対する基準が新たに設定されたことに対して、アルベルト・シュバイツァーは、誰が彼らに許容することを許したのか、と憤ったという[9][8]。
1954年には、被曝低減の原則を「可能な最低限のレベルに」(to the lowest possible level)としていたが、1956年には「実行できるだけ低く」(as low as practicable)、1965年には「容易に達成できるだけ低く」(as low as readily achievable)と後退した表現となり、「経済的および社会的考慮も計算に入れて」という字句も加えられ、1973年には「合理的に達成できるだけ低く」(as low as reasonably Achievable)とさらに後退した表現となった[8][10]。これらの基準運用の原則は、頭文字を取って、それぞれ、ALAP(1954年、1956年)、ALARA1(1965年)、ALARA2(1973年)と呼ぶ。
ウェード・アリソンは、「実際に行われている放射線治療における分割照射は放射線照射が正常な細胞に与えるダメージが修復される時間を事実上1日とし、治療において正常細胞が受ける線量率はICRPの定めた一般人向け上限線量率の20万倍に達するが、ICRP は被曝限度を年間の総量で示しているだけで既存の安全基準は急性被曝と慢性被曝の影響の違いをほとんど無視している」、と主張している[11]。またアリソンは、実際のデータが示す単回急性被曝で問題がないと判断される100ミリシーベルトを一ヵ月の許容限度に設定できると主張しているが、これはICRPの許容する年間1ミリシーベルトの千倍の許容量である[12]。
元ICRP委員(1997年より4年間)の中村仁信は、「ICRP は,少しの放射線でも危険とする理由として,1個の突然変異でもがんの可能性があると主張してきたがこれが間違いであることが明らかになっている」と主張している[13]。 近藤宗平は「ICRPが出す勧告は、日本を含む世界各国の放射線障害防止に関する法令の基礎にされているが、実際の資料に基づいていないため、虚偽の情報」としている[14]。
これは完全な事実誤認である。ICRPの設立は1928年であり、オットー・ハーンが核分裂反応を発見する1938年以前のことである。ちなみに最初の原子力発電所であるソ連のオブニンスク発電所が運転を開始したのは1954年。
一方欧州放射線リスク委員会は、IAEAなどの原子力推進側の人物がICRP委員会の正会員でありICRP勧告(2007年)にも参加している事を報告している[15]。
2007年の勧告では、1年間の被曝限度となる放射線量を平常時は1mSv未満、緊急時には20~100mSv、緊急事故後の復旧時は1〜20mSvと定めている[16]。この勧告に基づき、2011年に発生した東北地方太平洋沖地震に伴う福島第一原子力発電所の事故に際し、ICRPは日本政府に対して被曝放射線量の許容値を通常の20~100倍に引き上げることを提案した。ただし、事故後も住民が住み続ける場合は1〜20mSvを限度とし、長期的には1mSv未満を目指すべきだとしている [17]。これを受け内閣府の原子力安全委員会は、累積被曝量が20mSvを超えた地域において防護措置をとるという方針を政府に提言した[16]。
[ヘルプ] |
この項目は、原子力に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めています(プロジェクト:原子力発電所/Portal:原子力)。 |
|
Abbreviation | ICRP |
---|---|
Formation | 1928 |
Type | INGO |
Location |
|
Region served
|
Worldwide |
Official language
|
English, French |
Parent organization
|
International Society of Radiology (ISR) |
Website | ICRP Official website |
The International Commission on Radiological Protection (ICRP) is an independent, international, non-governmental organisation, which provides recommendations and guidance on radiation protection.
It was founded in 1928 by at the second International Congress of Radiology in Stockholm, Sweden and was then called the International X-ray and Radium Protection Committee (IXRPC).[1] In 1950 it was restructured to take account of new uses of radiation outside the medical area, and given its present name.
The ICRP is a sister organisation to the International Commission on Radiation Units and Measurements (ICRU). In general terms ICRU defines the units, and ICRP recommends, develops and maintains the International System of Radiological Protection which uses these units.
The ICRP is a not-for-profit organisation registered as a charity in the United Kingdom and has its scientific secretariat in Ottawa, Canada.
It is an independent, international organisation with more than two hundred volunteer members from approximately thirty countries on six continents, who represent the world's leading scientists and policy makers in the field of radiological protection.
The International System of Radiological Protection has been developed by ICRP based on (i) the current understanding of the science of radiation exposures and effects and (ii) value judgements. These value judgements take into account societal expectations, ethics, and experience gained in application of the system.
The work of the commission centres on the operation of five main committees:
Supporting these committees are task groups and working parties.
The ICRP's key output is the production of regular publications disseminating information and recommendations through the "Annals of the ICRP". A full list of the publications can be seen here [1]
A year after Rontgen’s discovery of X-rays, the American engineer Wolfram Fuchs (1896) gave what is probably the first protection advice, but many early users of X-rays were initially unaware of the hazards and protection was rudimentary or non-existent.
The dangers of radioactivity and radiation were not immediately recognized. The discovery of x‑rays in 1895 led to widespread experimentation by scientists, physicians, and inventors. Many people began recounting stories of burns, hair loss and worse in technical journals as early as 1896. In February of that year, Professor Daniel and Dr. Dudley of Vanderbilt University performed an experiment involving x-raying Dudley's head that resulted in his hair loss. A report by Dr. H.D. Hawks, a graduate of Columbia College, of his suffering severe hand and chest burns in an x-ray demonstration, was the first of many other reports in Electrical Review.[3]
Many experimenters including Elihu Thomson at Thomas Edison's lab, William J. Morton, and Nikola Tesla also reported burns. Elihu Thomson deliberately exposed a finger to an x-ray tube over a period of time and suffered pain, swelling, and blistering.[4] Other effects, including ultraviolet rays and ozone were sometimes blamed for the damage.[5] Many physicians claimed that there were no effects from x-ray exposure at all.[4]
As early as 1902 William Herbert Rollins wrote almost despairingly that his warnings about the dangers involved in careless use of x-rays was not being heeded, either by industry or by his colleagues. By this time Rollins had proved that x-rays could kill experimental animals, could cause a pregnant guinea pig to abort, and that they could kill a fetus.[6] He also stressed that "animals vary in susceptibility to the external action of X-light" and warned that these differences be considered when patients were treated by means of x-rays.
It was not until 1925 that the establishment of international radiation protection standards was discussed at the first International Congress of Radiology (ICR).
The second ICR was held in Stockholm in 1928 and ICRU proposed the adoption of the rontgen unit; and the ‘International X-ray and Radium Protection Committee’ (IXRPC) was formed. Rolf Sievert was named Chairman, but a driving force was George Kaye of the British National Physical Laboratory.
The committee met for just a day at each of the ICR meetings in Paris in 1931, Zurich in 1934, and Chicago in 1937. At the 1934 meeting in Zurich, the Commission was faced with undue membership interference. The hosts insisted on having four Swiss participants (out of a total of 11 members), and the German authorities replaced the Jewish German member with another of their choice. In response to this, the Commission decided on new rules in order to establish full control over its future membership.
After World War II the increased range and quantity of radioactive substances being handled as a result of military and civil nuclear programmes led to large additional groups of occupational workers and the public being potentially exposed to harmful levels of ionising radiation.
Against this background, the first post-war ICR convened in London in 1950, but only two IXRPC members had survived the war; Lauriston Taylor and Rolf Sievert. Taylor was invited to revive and revise the Commission, and the Commission was now given its present name: the International Commission on Radiological Protection (ICRP). Sievert remained an active member, Sir Ernest Rock Carling (UK) was appointed as Chairman, and Walter Binks (UK) took over as Scientific Secretary because of Taylor’s concurrent involvement with the sister organisation, ICRU.
At that meeting, six sub-committees were established on:
The next meeting was in 1956 in Geneva. This was the first time that a formal meeting of the Commission took place independently of the ICR. At this meeting, ICRP became formally affiliated with the World Health Organization (WHO) as a ‘participating non-governmental organisation’.
In 1959, a formal relationship was established with the International Atomic Energy Agency (IAEA), and subsequently with UNSCEAR, the International Labour Office (ILO), the Food and Agriculture Organization (FAO), the International Organization for Standardization (ISO), and UNESCO.
At the meeting in Stockholm in May 1962, the Commission also decided to reorganise the committee system in order to improve productivity and four committees were created:
After many assessments of committee roles within an environment of increasing workloads and changes in societal emphasis, by 2008 the committee structure had become:
The key output of the ICRP and its historic predecessor has been the issuing of recommendations in the form of reports and publications. The contents are made available for adoption by national regulatory bodies to the extent that they wish.
Early recommendations were general guides on exposure and thereby dose limits, and it was not until the nuclear era that a greater degree of sophistication was required.
In the "1951 Recommendations" the commission recommended a maximum permissible dose of 0.5 rontgen in any 1 week in the case of whole-body exposure to X and gamma radiation at the surface, and 1.5 rontgen in any 1 week in the case of exposure of hands and forearms. Maximum permissible body burdens were given for 11 nuclides. At this time it was first stated that the purpose of radiological protection was that of avoiding deterministic effects from occupational exposures, and the principle of radiological protection was to keep individuals below the relevant thresholds.
A first recommendation on restrictions of exposures of members of the general public appeared in the commission’s part of the 1954 Recommendations. It was also stated that ‘since no radiation level higher than the natural background can be regarded as absolutely ‘‘safe’’, the problem is to choose a practical level that, in the light of present knowledge, involves a negligible risk’. However, the Commission had not rejected the possibility of a threshold for stochastic effects. At this time the rad and rem were introduced for absorbed dose and RBE-weighted dose respectively.
At its 1956 meeting the concept of a controlled area and radiation safety officer were introduced, and the first specific advice was given for pregnant women.
In 1957, there was pressure on ICRP from both the World Health Organisation and UNSCEAR to reveal all of the decisions from its 1956 meeting in Geneva. The final document, the Commission’s 1958 Recommendations was the first ICRP report published by Pergamon Press. The 1958 Recommendations are usually referred to as ‘Publication 1’.
The significance of stochastic effects began to influence the commission’s policy and a new set of recommendations was published as Publication 9 in 1966. However, during development its editors became concerned about the many different opinions on the risk of stochastic effects. The Commission therefore asked a working group to consider these, and their report, Publication 8 (1966), for the first time for the ICRP summarised the current knowledge about radiation risks, both somatic and genetic. Publication 9 then followed, and substantially changed radiation protection emphasis by moving from deterministic to stochastic effects.
In 1977 Publication 26 set out the new system of dose limitation and introduced the three principles of protection:
(a) no practice shall be adopted unless its introduction produces a positive net benefit
(b) all exposures shall be kept as low as reasonably achievable, economic and social factors being taken into account
(c) the doses to individuals shall not exceed the limits recommended for the appropriate circumstances by the Commission
These principles have since become known as justification, optimisation (as low as reasonably achievable), and the application of dose limits. The optimisation principle was introduced because of the need to find some way of balancing costs and benefits of the introduction of a radiation source involving ionising radiation or radionuclides.
The 1977 Recommendations were very concerned with the ethical basis of how to decide what is reasonably achievable in dose reduction. The principle of justification aims to do more good than harm, and that of optimisation aims to maximise the margin of good over harm for society as a whole. They therefore satisfy the utilitarian ethical principle proposed primarily by Jeremy Bentham and John Stuart Mill. Utilitarians judge actions by their overall consequences, usually by comparing, in monetary terms, the relevant benefits obtained by a particular protective measure with the net cost of introducing that measure.
On the other hand, the principle of applying dose limits aims to protect the rights of the individual not to be exposed to an excessive level of harm, even if this could cause great problems for society at large. This principle therefore satisfies the Deontological principle of ethics, proposed primarily by Immanuel Kant.
Consequently the concept of the "collective dose" was introduced to facilitate Cost–benefit analysis and to restrict the uncontrolled build-up of exposure to long-lived radio nuclides in the environment. With the global expansion of nuclear reactors and reprocessing it was feared global doses could again reach the levels seen from atmospheric testing of nuclear weapons. So, by 1977, the establishment of dose limits was secondary to the establishment of cost–benefit analysis and use of collective dose.
During the 1980s, there were re-evaluations of the survivors of the atomic bombing at Hiroshima and Nagasaki, partly due to revisions in the dosimetry. The risks of exposure were claimed to be higher than those used by ICRP, and pressures began to appear for a reduction in dose limits.
By 1989, the commission had itself revised upwards its estimates of the risks of carcinogenesis from exposure to ionising radiation. The following year, it adopted its 1990 Recommendations (ICRP, 1991) for a ‘system of radiological protection’. The principles of protection recommended by the Commission were still based on the general principles given in Publication 26. However there were important additions which weakened the link to cost benefit analysis and collective dose, and strengthened the protection of the individual, which reflected changes in societal values:
(a) No practice involving exposures to radiation should be adopted unless it produces sufficient benefit to the exposed individuals or to society to offset the radiation detriment it causes. (The justification of a practice)
(b) In relation to any particular source within a practice, the magnitude of individual doses, the number of people exposed, and the likelihood of incurring exposures where these are not certain to be received should all be kept as low as reasonably achievable, economic and social factors being taken into account. This procedure should be constrained by restrictions on the doses to individuals (dose constraints), or on the risks to individuals in the case of potential exposures (risk constraints) so as to limit the inequity likely to result from the inherent economic and social judgements. (The optimisation of protection)
(c) The exposure of individuals resulting from the combination of all the relevant practices should be subject to dose limits, or to some control of risk in the case of potential exposures. These are aimed at ensuring that no individual is exposed to radiation risks that are judged to be unacceptable from these practices in any normal circumstances.
In the 21st century, the latest overall recommendations on an international system of radiological protection appeared. ICRP Publication 103(2007), after two phases of international public consultation, has resulted in more continuity than change. Some recommendations remain because they work and are clear, others have been updated because understanding has evolved, some items have been added because there has been a void, and some concepts are better explained because more guidance is needed.[7]
In collaboration with the ICRU, the commission has assisted in defining the use of many of the dose quantities in the accompanying diagram.
The table below shows the number of different units for various quantities and is indicative of changes of thinking in world metrology, especially the movement from cgs to SI units.[8]
Quantity | Name | Symbol | Unit | Year | System |
---|---|---|---|---|---|
Exposure (X) | röntgen | R | esu / 0.001293 g of air | 1928 | non-SI |
Absorbed dose (D) | erg•g−1 | 1950 | non-SI | ||
rad | rad | 100 erg•g−1 | 1953 | non-SI | |
gray | Gy | J•kg−1 | 1974 | SI | |
Activity (A) | curie | Ci | 3.7 × 1010 s−1 | 1953 | non-SI |
becquerel | Bq | s−1 | 1974 | SI | |
Dose equivalent (H) | röntgen equivalent man | rem | 100 erg•g−1 | 1971 | non-SI |
sievert | Sv | J•kg−1 | 1977 | SI | |
Fluence (Φ) | (reciprocal area) | cm−2 or m−2 | 1962 | SI (m−2) |
Although the United States Nuclear Regulatory Commission permits the use of the units curie, rad, and rem alongside SI units,[9] the European Union European units of measurement directives required that their use for "public health ... purposes" be phased out by 31 December 1985.[10]
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「国際放射線防護委員会」 |
拡張検索 | 「ICRP勧告」 |
関連記事 | 「IC」「ICR」 |
.