出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2016/04/27 06:46:41」(JST)
この項目では、時間の単位について説明しています。角度の単位については「秒 (角度)」をご覧ください。 |
びょう
秒 |
|
---|---|
原子時計 |
|
記号 | s (sec ではない) |
系 | 国際単位系 (SI) |
種類 | 基本単位 |
量 | 時間 |
定義 | セシウム133の原子の基底状態の2つの超微細準位間の遷移により放射される電磁波の周期の9192631770倍に等しい時間 |
由来 | 平均太陽日(LOD)の1/86400 |
テンプレートを表示 |
秒(びょう、記号 s)は、国際単位系 (SI) 及びMKS単位系[1]、CGS単位系[2]における時間の物理単位である。他の量とは関係せず完全に独立して与えられる7つのSI基本単位の一つである[3][4]。秒の単位記号は、「s」であり、「sec」などとしてはならない(後述)。
「秒」は、歴史的には地球の自転の周期の長さ、すなわち「一日の長さ」(LOD[5])を基に定義されていた[6]。すなわち、LODを24分割した太陽時を60分割して「分」、さらにこれを60分割して「秒」が決められ、結果としてLODの86 400分の1が「秒」と定義されてきた。しかしながら、19世紀から20世紀にかけての天文学的観測から、LODには10-8程度の変動があることが判明し[7]、時間の定義にはそぐわないと判断された。そのため、地球の公転周期に基づく定義を経て、1967年に、原子核が持つ普遍的な現象を利用したセシウム原子時計が秒の定義として採用された。
なお、1秒が人間の標準的な心臓拍動の間隔に近いことから誤解されることがあるが偶然に過ぎず、この両者には関係はない[7]。
現在の「秒」は、以下のように定義されている。
La seconde est la durée de 9192631770 périodes de la radiation correspondant à la transition entre les deux niveaux hyperfins de l'état fondamental de l'atome de césium 133.[3][8]
和訳:秒は、セシウム 133 の原子の基底状態の二つの超微細構造準位の間の遷移に対応する放射の周期の9192631770倍の継続時間である.[9]— 第13回国際度量衡総会決議1、1967/68年、Brochure sur le SI (8e édition)
この定義が各国において採用されており、例えば、日本の計量法体系においては「セシウム百三十三の原子の基底状態の二つの超微細準位の間の遷移に対応する放射の周期の九十一億九千二百六十三万千七百七十倍に等しい時間」(計量単位令別表第一第3項)と定義されている[10]。
なお、1997年に、この定義に次の補則が定められた[11]。
Cette définition se réfère à un atome de césium au repos, à une température de 0 K.[3][8]
和訳:この定義は温度 0 K のもとで静止した状態にあるセシウム原子に基準を置いている.[11]— 国際度量衡委員会、1997年、Brochure sur le SI (8e édition)
この補則は SI 秒の定義が、黒体輻射により摂動を受けないセシウム原子に基づいていることを明確にしている。すなわち、周囲環境が熱力学的温度で0 K である。
古代のバビロニアそして中国では、1日を12等分する時間を設け、これを日時計による観測で確認をしていた[12]。また、少なくとも紀元前2000年頃にはエジプトでは1日を昼と夜に分け、それぞれを12の時間単位で区切っていた[12]。これは不定時法と呼ばれ、季節による昼や夜の長さ変動から、それら時間単位の実際の長さは一定していなかった。古代ギリシアのヒッパルコス(紀元前150年前後)と古代ローマのクラウディオス・プトレマイオス(150年前後)は、それぞれ1日を六十進法で細分し、平均化された1時間(1日の24分割)や、1時間の単純な分数(1/4や2/3など)そして時間の度合い(現代の「分」にも通じる1日の360分割)などを用いたが、これらは現代の分や秒とは異なっていた[13]。
六十進法の定義によって分けられる1日は 1/60のn乗の時間区分を設けていくことになるが、300年頃のバビロニアでは少なくとも(1/60)6までの分割(2マイクロ秒よりも短い)を行っていた。ただし、そのようなごく短い時間単位を基準に用いていた訳ではなく、例えば1年という時間を細分単位で表すような場合には1日の60分割単位を基礎としていた。しかも、その単位時間さえも正確な測定を行う手段を彼らは持っていなかった。ある例では、彼らは朔望月の平均時間を六十進法で29;31,50,8,20日と計算していた。これはヒッパルコスとプトレマイオスも行った六十進法での計算に相当し、さらに現代のユダヤ暦における平均月29日と12時間793ヘレク(英語版)である。この「ヘレク」は1080倍で1時間となる[14]。バビロニアでは「時」は使わず、現代の2時間(120分)に相当する時間、4分に相当する時間、10/3秒に相当する時間(ユダヤ暦の「ヘレク」と同じ)をそれぞれ単位とした。[15]
西暦1000年、ペルシア人の学者アブー・ライハーン・アル・ビールーニーは、新月となる週に、日曜日の正午を基準点とした「日、時、分、秒」さらに秒より細かな2段階の区分を施した[16]。1267年にはロジャー・ベーコンが、満月日の正午を基準に「時(horae)、分(minuta)、秒(secunda)」さらに細かな tertia と quarta へ分けた[17]。これら「秒」を60分の1に細分する用語「third」は、現代のポーランド語「tercja」やトルコ語「salise」に残っているが、通常は小数点以下2桁で示される。
現代英語の「second」は、元々「第二の分」「次の分」を意味する「second minute」と呼んでいたことを由来とする[18]。それに対して分のことは「第一の分」を意味する「prime minute」と呼んでいた。すなわち、1時間に対する第1の分割、第2の分割という意味である。
時計が秒単位を表示するようになった初期の例は、16世紀後半に現れる。1560-1570年のフレマースドルフ・コレクション[19]には、秒針を持つねじ式時計がある[20][21]。同じ頃、タキ・アルジン(英語版)は5秒刻みの表示をする時計を製作した[22][23]。1579年にはヨスト・ビュルギがヴィルヘルム5世の依頼を受け、秒を示す時計を作った[24]。1581年にはティコ・ブラーエが天文台の時計を改修した際に分と秒の表示を加え、1587年に彼は、この時計は4秒の狂いしか生じなかったと述べた[25]。
秒表示の正確性は、振り子時計が発明され、日時計による見かけ時間の表示から平均時を表すことができるようになって向上した。特に1670年にビル・クレメント(英語版)がクリスティアーン・ホイヘンスの時計に秒振り子(英語版)を加えた事が顕著に貢献した[26]。ロングケース・クロック(英語版)の秒振り子は一往復で2秒を示し、片方からもう一方へ振れる際に鳴る機械音が1秒毎の時間を刻んだ。そして、精密時計の文字盤には1分間で一周する秒針が加えられるようになった。
日本の法令では、1951年(昭和26年)に制定された計量法で、時間の計量単位として秒が定められ、「秒は、平均太陽日の1/86400とし、東京天文台が秒として決定する時間で現示する」とされた[27]。当時の東京天文台(現国立天文台)では、子午儀による恒星の観測で時を測定し、測定結果を外挿して標準時計であるリーフラー振り子時計[28]の歩度を調整して保時していたといわれる[29]。
歴史的には地球の自転周期すなわち一日の長さ(LOD)は一定だと考えられていた。ところが、クォーツ時計の精度が向上すると、LODには潮汐力[30] [31]や季節変動[32]による1〜2ミリ秒程度の変動、すなわち10-8日程度の変動があることが分かってきた[33]。このため、LODを元にした定義では、精度上の問題があることが判明した。
LODの変化には、海流や大気の循環、さらに地球の核の流動なども影響を及ぼしている。また、地震の発生も潮汐力による変動の1000分の1程度のわずかの自転周期の変動を起こす[34]。
なお、LODが数年間の期間内に徐々に長くなっている(又は、地球の自転が遅くなっている)ことが閏秒が設けられている理由であるということが広範に信じられているきらいがあるが、これは、誤解である。詳細は閏秒挿入の理由についての間違った理解、地球の自転を参照のこと。
このLODの不安定性を受けて、1954年の第10回国際度量衡総会(CGPM)での決議に基づき、1956年の国際度量衡委員会(CIPM)において、秒の定義を地球自転よりも変動が少ない公転に求め[30]、「1900年の年初に近い時で、太陽の幾何学(章動と光行差の影響を除いた)平均黄経が 279度41分48.04秒 となる時刻を基点として測り、この時刻を暦表時1900年1月0日の12時(日本標準時で1899年12月31日21時)と定義する。暦表秒はこの時刻から1太陽年の 1/31556925.9747」と改められた[18]。日本の法令では、1958年(昭和33年)に改正された計量法で、「秒は、明治32年12月31日午後9時における地球の公転の平均角速度に基いて算定した1太陽年の1/31556925.9747として東京天文台が現示する」とされた[35]。当時の東京天文台では、写真天頂筒(PZT)で時の計測を行い水晶時計で保時していたといわれる[36]。暦表時とは、ニュートン力学に基づき地球の公転周期を元にして定めた時刻である。このときに使用されたのは、18世紀から19世紀までの天文観測に基づいて1900年以降の太陽の運動を示す方程式を記述した「ニューカムによる太陽の見かけの(光行差を考慮した)平均黄経」であった[37]。この定義は1960年の第11回国際度量衡総会 (CGPM) で批准された[38]。1900年というのは、この年における平均太陽日が86400秒になるという意味ではなく、単に時間を決めるための基準点としてきりの良い日付が選ばれたに過ぎない。そのため、基準値をもう一度測定しようとしても1900年に遡って行うことは不可能であり、再現性に課題を抱えていた[32]。
新たな定義は、アルカリ金属であるセシウムを用いた原子時計によるものである[18]。セシウムは天然では原子量133の元素のみが存在し、かつその沸点は671℃と低く、他の元素に比べて使いやすいために、原子時計に採用されていた[18]。そのため、観測によってのみしか決定できない地球の公転よりも、実験室で求めることが可能な原子時計を直接用いて秒の定義を決めることが効率的と考えられた[18]。これには、量子力学の原理から、すべての133Cs原子には個別の差が存在しないため、原理的に同一の定義が可能という特色もある[39]。
1955年6月にイギリスの国立物理学研究所 (NPL) がセシウム原子時計を実用化すると、いくつかの国家は原子時計を導入し、時系の運用に使用し始めた[40]。まず、原子時計には誤差の徹底的な洗い出しと対策が施され[41]、そしてアメリカ海軍天文台 (USNO)のウィリアム・マーコウィッツ(英語版)とイギリス国立物理学研究所(NPL)のルイ・エッセン(英語版)によってセシウム原子の超微細遷移周波数と暦表秒との関係が求められた[37][42]。マーコウィッツとエッセンは、3年間の共同研究を経て1秒が9192631770周期だという数値を得た。これは、1951年にマーコウィッツが発明した星と月の動きを同時に追える月観測用カメラをUSNOが2台、大西洋を挟んで[43]並列で設置し、月による星食から、高精度の暦表時を確認することで得られた[44]。また、この観測でNPLは、アメリカ内陸部コロラド州の標準電波局(英語版)短波放送による識別信号を使い、2台の原子時計の比較調整を行った[43][44]。
1956年に国際度量衡委員会 (CIPM) の下部機関として設置された、「秒の定義に関する諮問委員会 (CCDS、現CCTF)」第1回会議で、エッセンはセシウム原子時計と天文時系の比較結果を報告し、セシウム原子周波数標準を秒の原器にするよう強く主張した。しかしその会議では、メートルの定義をメートル原器からクリプトン原子波長に置き換えた前例と同じように、10年間ぐらいは各種周波数標準と比較研究する必要があると結論された[45][46]。
その後、1964年には、第12回国際度量衡総会 (CGPM) で高度の時間計測のために原子的標準に到達する緊急性を認め、CGPM決議5による委任に基づいてCIPMで時間の物理学的測定のために暫定的に用いるべき原子又は分子に基づく周波数標準の指定を行った[47]。 そして、40カ国の代表が参加した1967年の第13回CGPMにおいて、現在の原子時計によるSIの秒の定義が決定された[48][41]。日本の法令では、1972年(昭和47年)に改正された計量法で、「秒は、セシウム133の原子の基底状態の二つの超微細準位の間の遷移に対応する放射の周期の9192631770倍に等しい時間として現示する」とされ、秒を東京天文台が現示する定めがなくなり、どの機関が現示するのかは明示されなくなった[49]。さらに、1992年(平成4年)に旧計量法が全部改訂され、新たな計量法の規定に基づく計量単位令により、秒は定義だけが示され、国の機関が秒を現示する定めはなくなった[50][10]。1997年の国際度量衡局 (BIPM) の会議では「秒の定義は0Kの下で静止した状態にあるセシウム原子に基準を置いている」という声明が出された[51]。しかし現実には、絶対零度、止まった原子、そして外部からの電磁波等を全く排除した状態を作り出すことは事実上不可能であり、この理想状況との差異を評価して補正を加えなければならない。これを自動で行う機器の例には、一次周波数標準器がある[30]。日本では、法令で秒を現示する指定がない状態が継続していたが、2003年(平成15年)に、秒の現示に代わって時間(秒)の逆数で表される周波数について、周波数標準器が経済産業大臣から特定標準器[52]として指定された[53]。なお、国家標準(特定標準器)には、独立行政法人情報通信研究機構(NICT)と独立行政法人産業技術総合研究所計量標準総合センター(NMIJ)の周波数標準器(原子時計)が指定されている[54]。
年 | 定義内容 | 相対的な不確かさ |
---|---|---|
‐ | 平均太陽日(LOD)の1/86400 (=1/(24*60*60) )[32] | 10−8[55] |
1960年 | 1900年1月0日12時から1太陽年の1/31556925.9747 [32] (1956年CGPM) |
10−10[55] |
1967年 | 2つの基底状態セシウム133超微細準位間の遷移に対応する 放射周期の9192631770倍に等しい時間(第13回CGPM) |
10−10[56] |
1997年 | 0Kにおける静止したセシウム原子の時計 (1997年CIPM) |
10−12[56] |
(参考) | 可視光領域の遷移を利用する原子時計など | 10−14[56] - 10−16[55] |
秒の単位記号は、小文字・立体の「s」である[57]。しばしば「sec」や「sec.」と書かれることがあるが、これらの表記は国際単位系でも日本の計量法でも認められておらず、誤りである[58][59]。
SI接頭辞では、秒の倍量単位・分量単位を定めている[60]。秒の倍量単位は、定義上はキロ秒、メガ秒などもありうるが、通常は分・時間・日・週・月・年・世紀・千年紀などの慣用の単位が使われるため、接頭辞つきの単位はほとんど用いられない。参考までに、これらの慣用の単位を秒で表すと以下のようになる。
上記の3つの単位は、SI単位と併用される非SI単位である(SI併用単位#表6 SI単位と併用される非SI単位)。 なお、平均太陽日(LOD)は観測によって決まるものであり、単位としての日(d)(= 正確に 86 400s)とは、ずれがあることに注意(詳細は、地球の自転、閏秒を参照)。
以下の単位は、国際単位系(SI)では定義されていない[61]。年と世紀は、天文学では通常、ユリウス年とユリウス世紀を用いる。定義は国際天文学連合による[62]。
逆に1秒は慣用の単位では以下のように表される(全て、6桁目を四捨五入している)。
分量単位には以下のものがある。
分量単位 | 記号 | 時間 | 備考 |
---|---|---|---|
ミリ秒 | ms | 10-3秒 1,000分の1秒 |
|
マイクロ秒 | µs | 10-6秒 100万分の1秒 |
|
ナノ秒 | ns | 10-9秒 10億分の1秒 |
|
ピコ秒 | ps | 10-12秒 1兆分の1秒 |
|
フェムト秒 | fs | 10-15秒 1,000兆分の1秒 |
|
アト秒 | as | 10-18秒 100京分の1秒 |
|
ゼプト秒 | zs | 10-21秒 10垓分の1秒 |
|
ヨクト秒 | ys | 10-24秒 1𥝱分の1秒 |
漢字「秒」の本来の意味は、小麦や稲などの穂先の堅い毛すなわち
原子時計で定義された秒を基礎に置いた時刻、正確には世界中にある300台以上の原子時計が算出する平均によって決められる時系があり、これを国際原子時 (TAI) と呼び、1958年1月1日0時に世界時 (UT) に合わせて開始している[65]。ところで、地球の自転に基づく世界時 (UT) は、地球の自転の角速度の変動により、国際原子時 (TAI) との間にズレが生じる[注釈 1]。日常生活に使用される時刻の基礎である協定世界時 (UTC) は1972年以後、原子時計に基づく国際原子時 (TAI) と全く同じ歩度(秒間隔)を維持しながら、正午近くに太陽が正中に来るように時刻を設定するため、国際原子時 (TAI) と世界時の UT1 との差が0.9秒を超えないようにする、閏秒調整を行っている[65]。
1961年から1971年までは標準周波数のオフセットと時刻のステップ調整で世界時の UT2 に近似していた(旧協定世界時)。1972年からはこのステップ調整は廃止されることになり、代わりに協定世界時 (UTC) と国際原子時 (TAI) との差を整数秒となるように調整することとなった。この制度変更を受けて1972年1月1日0時の協定世界時 (UTC) と国際原子時 (TAI) との差が正確に10秒(協定世界時 (UTC) が国際原子時 (TAI) から10秒遅れ)となるように調整(特別調整という)された。同時に、それ以降の協定世界時 (UTC) と国際原子時 (TAI)との歩度を調整する方法は、閏秒を適宜加えるか除くやり方に改められた(詳細は、閏秒の項を参照)。
1972年以降の閏秒の調整は、すべて閏秒1秒を加える操作であって、2012年までにこれが25回実施された。結果、特別調整(10秒)を加えると協定世界時と国際原子時との差異は2013年段階で35秒となっている。[65]
一般相対性理論によれば、狂いのない理想的な時計であっても、それが刻む時刻は、その時計が過去に、どのような重力場のなかをどのような運動をしたか、によって変わってくる。このような時刻を「固有時」と呼ぶ。これに対して、共通の基準となる目盛りのついた時間と空間を「基準座標系」と呼び、このうちの時間座標を「座標時(英語版)」と呼ぶことがある[66]。地球上の時計の固有時は、主に太陽、地球自体、月、諸惑星の重力ポテンシャルの影響下にあるものと考えてよい。時計のある場所が、これらの天体に対して位置を変えるので、このポテンシャルの影響は一定量と変化量の合成となる。この変化量の最大のものは太陽のポテンシャルの変化によるもので、地球軌道が楕円であるため太陽からの距離が年周変化することで生じ、地球上の時計が一斉に全振幅 6.6×10^−10 の年周変化をすることになる。これを時計面でみると秒の長さの変化が積算されるので、全振幅 3.3 ms の年周変化を示すことになる。なお、変化とは、一切の重力ポテンシャルの影響から全く離れた場所の座標時に比較して測られる量を言う。また、地球ポテンシャルの影響として、時計の置かれている場所の標高(ジオイドからの高さ)の違いに対応して、1 km当たり1.1×10^−13の歩度差が生じる[67]。
1967年に国際度量衡委員会 (CIPM) の下部機関である秒の定義に関する諮問委員会 (CCDS、現CCTF)で、原子標準による秒の再定義が具体的に提案され始めると、時間、周波数分野での相対性論効果の取扱いについて、国際的かつ公式に討議されるようになる。この時の議論では、例えば日本の代表からは「セシウム遷移観測にあたり、特定の場所の指定を行えば、秒の定義はその場所の固有時になる」、「観測対象が適当な大きさの実験室内に限られた物理測定では固有時の採用で必要かつ十分であるが、対象が実験室外にある場合は一般相対論の補正を必要とする」、「地球上又はその近傍にある原子時計は、天体に由来する引力ポテンシャルの影響を受ける」、また、「遠隔の原子時計の相互比較のために必要欠くべからざる補正は現在直ちに用いられる形では準備されていないと思われる」などの意見があった[68]。
このような国際的討議の結果、秒の定義には特定の場所は指定しないことになった。これは、物理法則を求めるための実験室内の一般計測では、その場所の固有時を用いれば必要かつ十分であるということを基礎としたもので、必要があれば相対性理論による補正を行えばよいという考え方である。 しかし、セシウム原子の遷移周波数で定めた秒間隔を積算する原子時や周波数標準について、各国の標準研究所間で相互比較をしたり、世界的な統一基準を確立しようとすると固有時のみの考え方では不十分となり、座標時的な概念の導入が必要となる[68]。
このため、国際原子時 (TAI) について、1980年に秒の定義に関する諮問委員会(CCDS、現CCTF)第9回会合では国際原子時 (TAI) は座標時なのか、基準系、座標変換に必要なモデルなどについて議論された。その結果「TAI は、回転するジオイド上で実現される SI の秒を目盛りの単位とした, 地心座標系で定義される座標時の目盛りである」と声明を発表している[69]。また、「現状では、一般相対性理論の一次補正(地球の重力ポテンシャルの差、速度の差および地球の自転に対する補正)を行うことによってジオイド近傍のいかなる固定点あるいは移動点にも十分な精度で TAI を拡大することができる」とされる[68]。
本脚注は、出典・脚注内で提示されている「出典」を示しています。
ウィキペディアの姉妹プロジェクトで 「秒」に関する情報が検索できます。 |
|
ウィクショナリーの辞書項目 | |
ウィキブックスの教科書や解説書 |
|
ウィキクォートの引用句集 |
|
ウィキソースの原文 |
|
コモンズでメディア |
|
ウィキニュースのニュース |
|
ウィキバーシティの学習支援 |
|
|
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「二次」「second」「第二」「秒間」「sec」 |
拡張検索 | 「1秒量」「1秒率」「カウント毎秒」 |
-一秒率
.