出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2012/09/26 14:39:10」(JST)
It has been suggested that Sensory nerve be merged into this article or section. (Discuss) Proposed since June 2010. |
Sensory neurons are typically classified as the neurons responsible for converting various external stimuli that comes from the environment into corresponding internal stimuli. They are activated by sensory input (vision, touch, hearing, etc.), and send projections into the central nervous system that convey sensory information to the brain or spinal cord. Unlike neurons of the central nervous system, whose inputs come from other neurons, sensory neurons are activated by physical modalities such as light, sound, and temperature.
In complex organisms, the central nervous system is the destination in which sensory neurons transmit their data to; in the case of less complex organisms, such as the hydra, sensory neurons send their data to motor neurons and sensory neurons can also send data via (electrical impulses) to the brain.
At the molecular level, sensory receptors located on the cell membrane of sensory neurons are responsible for the conversion of stimuli into electrical impulses. The type of receptor employed by a given sensory neuron determines the type of stimulus it will be sensitive to. For example, neurons containing mechanoreceptors are sensitive to tactile stimuli, while olfactory receptors make a cell sensitive to odors.[1]
Contents
|
The somatic sensory system includes the sensations of touch, pressure, vibration, limb position, heat, cold, and pain.
The cell bodies of somatic sensory afferent fibers lie in ganglia throughout the spine. These neurons are responsible for relaying information about the body to the central nervous system. Neurons residing in ganglia of the head and body supply the central nervous system with information about the aforementioned external stimuli occurring to the body. Pseudounipolar neurons are located in the dorsal root ganglia (the head).[2]
Specialized receptor cells called mechanoreceptors often encapsulate afferent fibers to help tune the afferent fibers to the different types of somatic stimulation. Mechanoreceptors also help lower thresholds for action potential generation in afferent fibers and thus make them more likely to fire in the presence of sensory stimulation.[3]
Proprioceptors are another type of mechanoreceptors which literally means "receptors for self." These receptors provide spatial information about limbs and other body parts.[4]
Nociceptors are responsible for processing pain and temperature changes. The burning pain and irritation experienced after eating a chili pepper (due to its main ingredient, capsaicin), the cold sensation experienced after ingesting a chemical such as menthol or icillin, as well as the common sensation of pain are all a result of neurons with these receptors.[5]
Problems with mechanoreceptors lead to disorders such as:
Vision is one of the most complex sensory systems. The eye has to first "see" via refraction of light. Then, light energy has to be converted to electrical signals by photoreceptor cells and finally these signals have to be refined and controlled by the synaptic interactions within the neurons of the retina. The five basic classes of neurons within the retina are photoreceptor cells, bipolar cells, ganglion cells, horizontal cells, and amacrine cells. The basic circuitry of the retina incorporates a three-neuron chain consisting of the photoreceptor (either a rod or cone), bipolar cell, and the ganglion cell. As the picture shows, the first action potential occurs in the retinal ganglion cell. This pathway is the most direct way for transmitting visual information to the brain. Problems and decay of sensory neurons associated with vision lead to disorders such as:
The auditory system is responsible for converting pressure waves generated by vibrating air molecules or sound into signals that can be interpreted by the brain. This mechanoelectrical transduction is mediated with hair cells within the ear. As the picture shows, depending on the movement, the hair cell can either hyperpolarize or depolarize. When the movement is towards the tallest stereocilia, the K+ cation channels open allowing K+ to flow into cell and the resulting depolarization causes the Ca2+ channels to open, thus releasing its neurotransmitter into the afferent auditory nerve. There are two types of hair cells: inner and outer. The inner hair cells are the sensory receptors while the outer hair cells are usually from efferent axons originating from cells in the superior olivary complex[12] Problems with sensory neurons associated with the auditory system leads to disorders such as:
There are many drugs currently on the market that are used to manipulate or treat sensory system disorders. For instance, Gabapentin is a drug that is used to treat neuropathic pain by interacting with one of the voltage-dependent calcium channels present on non-receptive neurons.[15] Some drugs may be used to combat other health problems, but can have unintended side effects on the sensory system. Ototoxic drugs are drugs which affect the cochlea through the use of a toxin like aminoglycoside antibiotics, which poison hair cells. Through the use of these toxins, the K+ pumping hair cells cease their function. Thus, the energy generated by the endocochlear potential which drives the auditory signal transduction process is lost, leading to hearing loss.[16]
Ever since scientists observed cortical remapping in the brain of Taub’s Silver Spring monkeys, there has been a lot of research into sensory system plasticity. Huge strides have been made in treating disorders of the sensory system. Techniques such as constraint-induced movement therapy developed by Taub have helped patients with paralyzed limbs regain use of their limbs by forcing the sensory system to grow new neural pathways.[17] Phantom limb syndrome is a sensory system disorder in which amputees perceive that their amputated limb still exists and they may still be experiencing pain in it. The mirror box developed by V.S. Ramachandran, has enabled patients with phantom limb syndrome to realign their body map, the somatosensory system’s perception of where the body is in space with physical reality. It is a simple device which uses a mirror in a box to create an illusion in which the sensory system perceives that it is seeing two hands instead of one, therefore allowing the sensory system to control the "phantom limb". By doing this, the sensory system can gradually get acclimated to the amputated limb, and thus alleviate this syndrome.[18]
Peripheral nerve fibers can be classified based on axonal conduction velocity, mylenation, fiber size etc. For example, there are slow-conducting unmyelinated C fibers and faster-conducting myelinated Aδ fibers. These nerve fibers work with neurons to form the nervous system
Neuroscience portal |
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「知覚神経」 |
拡張検索 | 「secondary sensory neuron」「primary sensory neuron」「olfactory sensory neuron」 |
関連記事 | 「neuro」「sensory」「sensor」 |
.