オルニチンオキソ酸トランスアミナーゼ
WordNet
- street name for lysergic acid diethylamide (同)back breaker, battery-acid, dose, dot, Elvis, loony toons, Lucy in the sky with diamonds, pane, superman, window pane, Zen
- any of various water-soluble compounds having a sour taste and capable of turning litmus red and reacting with a base to form a salt
- having the characteristics of an acid; "an acid reaction"
- any of various wild bovines especially of the genera Bos or closely related Bibos (同)wild ox
- an adult castrated bull of the genus Bos; especially Bos taurus
- a class of transferases that catalyze transamination (that transfer an amino group from an amino acid to another compound) (同)aminotransferase, aminopherase
- an amino acid that does not occur in proteins but is important in the formation of urea
PrepTutorEJDIC
- 酸性の / 酸味のある,すっぱい(sour) / (言葉・態度などが)厳しい,しんらつな / 酸 / すっぱいもの / 《俗》=LSD
- 『雄牛』(去勢された食肉用・荷車用の成牛) / 《複数形で》ウシ(水牛,ヤク,バイソン,野牛など)
Wikipedia preview
出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2016/03/13 06:23:48」(JST)
[Wiki en表示]
ornithine aminotransferase |
Identifiers |
EC number |
2.6.1.13 |
CAS number |
9030-42-6 |
Databases |
IntEnz |
IntEnz view |
BRENDA |
BRENDA entry |
ExPASy |
NiceZyme view |
KEGG |
KEGG entry |
MetaCyc |
metabolic pathway |
PRIAM |
profile |
PDB structures |
RCSB PDB PDBe PDBsum |
Gene Ontology |
AmiGO / EGO |
Search |
PMC |
articles |
PubMed |
articles |
NCBI |
proteins |
|
ornithine aminotransferase |
Identifiers |
Symbol |
OAT |
Entrez |
4942 |
HUGO |
8091 |
OMIM |
258870 |
RefSeq |
NM_000274 |
UniProt |
P04181 |
Other data |
EC number |
2.6.1.13 |
Locus |
Chr. 10 q26 |
Ornithine aminotransferase (OAT) is an enzyme which is encoded in human by the OAT gene located on chromosome 10.
The OAT involved in the ultimate formation of the non-essential amino acid proline from the amino acid ornithine. Ornithine aminotransferase forms the initial intermediate in this process. It catalyzes the reverse reaction as well, and is therefore essential in creating ornithine from the starting substrate proline.
Contents
- 1 Structure
- 2 Function
- 3 Clinical Significance
- 4 See also
- 5 References
- 6 External links
Structure
The OAT gene encodes for a protein that is approximately 46 kDa in size. The OAT protein is expressed primarily in the liver and the kidney but also in the brain and the retina.[1] The OAT protein is localized to the mitochondrion within the cells where it is expressed.[2]
The structure of the OAT protein has been resolved usign X-ray cyrstallography and shows similarity to other subgroup 2 aminotransferases such as dialkyglucine decarboxylatse.[3] The OAT protein functions as a dimer and each monomer consists of a large domain, which contributes most to subunit interface, and a C-terminal small domain, and an N-terminal region containing a helix, loop, and three-sranded beta-meander. In the central large domain is a seven-stranded beta-sheet covered by eight helices. The co-factor of the OAT protein (pyridoxal-5'-phosphate) binds to OAT through a Schiff base at the lysine 292 position situated between two of the seven-stranded beta-sheet. Three amino acids (R 180, E 235, and R413) are thought to be involved in substrate binding at the active site.[3]
Function
Ornithine aminotransferase catalyzes the transfer of the delta-amino group from L-ornithine
- L-ornithine + a 2-oxo acid = L-glutamate 5-semialdehyde + an L-amino acid
The reaction requires pyridoxal 5'-phosphate as a co-factor and forms part of the subpathway that synthesizes L-glutamate 5-semialdehyde from L-ornithine.
Clinical Significance
Mutations in the OAT gene can lead to malfunctioning proteins, including both point mutations that abolish catalytic activities, large frame-shift mutations, as well as mutated proteins that are not properly targeted to the mitochondrion where its normal functionality occurs.[2] In the latter, abnormality of mitochondrial import causes ectopic accumulation of the OAT protein in the cytosol followed by rapid degradation by proteolysis. Deficiency of OAT activities causes ornithine aminotransferase deficiency, also known as gyrate atrophy of choroid and retina.[4][5][6][7]
The mechanism of gyrate atrophy of choroid and retina is thought to involve the toxicity of glyoxylate.[1]
See also
References
- ^ a b Rao GN, Cotlier E (1984). "Ornithine delta-aminotransferase activity in retina and other tissues". Neurochem. Res. 9 (4): 555–62. doi:10.1007/bf00964382. PMID 6462326.
- ^ a b Kobayashi T, Ogawa H, Kasahara M, Shiozawa Z, Matsuzawa T (1995). "A single amino acid substitution within the mature sequence of ornithine aminotransferase obstructs mitochondrial entry of the precursor". Am. J. Hum. Genet. 57 (2): 284–91. PMC 1801533. PMID 7668253.
- ^ a b Shen BW, Hennig M, Hohenester E, Jansonius JN, Schirmer T (1998). "Crystal structure of human recombinant ornithine aminotransferase". J. Mol. Biol. 277 (1): 81–102. doi:10.1006/jmbi.1997.1583. PMID 9514741.
- ^ "Gyrate atrophy of the choroid and retina". National Institutes of Health. Retrieved 2012-08-23.
- ^ Kim SJ, Lim DH, Kim JH, Kang SW (2013). "Gyrate atrophy of the choroid and retina diagnosed by ornithine-δ-aminotransferase gene analysis: a case report". Korean J Ophthalmol 27 (5): 388–91. doi:10.3341/kjo.2013.27.5.388. PMC 3782588. PMID 24082780.
- ^ Katagiri S, Gekka T, Hayashi T, Ida H, Ohashi T, Eto Y, Tsuneoka H (2014). "OAT mutations and clinical features in two Japanese brothers with gyrate atrophy of the choroid and retina". Doc Ophthalmol 128 (2): 137–48. doi:10.1007/s10633-014-9426-1. PMID 24429551.
- ^ Doimo M, Desbats MA, Baldoin MC, Lenzini E, Basso G, Murphy E, Graziano C, Seri M, Burlina A, Sartori G, Trevisson E, Salviati L (2013). "Functional analysis of missense mutations of OAT, causing gyrate atrophy of choroid and retina". Hum. Mutat. 34 (1): 229–36. doi:10.1002/humu.22233. PMID 23076989.
External links
- Ornithine aminotransferase at the US National Library of Medicine Medical Subject Headings (MeSH)
- Seiler N (September 2000). "Ornithine aminotransferase, a potential target for the treatment of hyperammonemias". Curr Drug Targets 1 (2): 119–53. doi:10.2174/1389450003349254. PMID 11465067.
Metabolism: Protein metabolism, synthesis and catabolism enzymes
|
|
Essential amino acids are in Capitals
|
|
K→acetyl-CoA |
LYSINE→ |
- Saccharopine dehydrogenase
- Glutaryl-CoA dehydrogenase
|
|
LEUCINE→ |
- Branched chain aminotransferase
- Branched-chain alpha-keto acid dehydrogenase complex
- Isovaleryl coenzyme A dehydrogenase
- Methylcrotonyl-CoA carboxylase
- Methylglutaconyl-CoA hydratase
- 3-hydroxy-3-methylglutaryl-CoA lyase
|
|
TRYPTOPHAN→ |
- Indoleamine 2,3-dioxygenase/Tryptophan 2,3-dioxygenase
- Arylformamidase
- Kynureninase
- 3-hydroxyanthranilate oxidase
- Aminocarboxymuconate-semialdehyde decarboxylase
- Aminomuconate-semialdehyde dehydrogenase
|
|
PHENYLALANINE→tyrosine→ |
|
|
|
G |
G→pyruvate
→citrate |
glycine→serine→ |
- Serine hydroxymethyltransferase
- Serine dehydratase
- glycine→creatine: Guanidinoacetate N-methyltransferase
- Creatine kinase
|
|
alanine→ |
|
|
cysteine→ |
|
|
threonine→ |
- L-threonine dehydrogenase
|
|
|
G→glutamate→
α-ketoglutarate |
HISTIDINE→ |
- Histidine ammonia-lyase
- Urocanate hydratase
- Formiminotransferase cyclodeaminase
|
|
proline→ |
- Proline oxidase
- Pyrroline-5-carboxylate reductase
- 1-Pyrroline-5-carboxylate dehydrogenase/ALDH4A1
- PYCR1
|
|
arginine→ |
- Ornithine aminotransferase
- Ornithine decarboxylase
- Agmatinase
|
|
→alpha-ketoglutarate→TCA |
|
|
Other |
- cysteine+glutamate→glutathione: Gamma-glutamylcysteine synthetase
- Glutathione synthetase
- Gamma-glutamyl transpeptidase
- glutamate→glutamine: Glutamine synthetase
- Glutaminase
|
|
|
G→propionyl-CoA→
succinyl-CoA |
VALINE→ |
- Branched chain aminotransferase
- Branched-chain alpha-keto acid dehydrogenase complex
- Enoyl-CoA hydratase
- 3-hydroxyisobutyryl-CoA hydrolase
- 3-hydroxyisobutyrate dehydrogenase
- Methylmalonate semialdehyde dehydrogenase
|
|
ISOLEUCINE→ |
- Branched chain aminotransferase
- Branched-chain alpha-keto acid dehydrogenase complex
- 3-hydroxy-2-methylbutyryl-CoA dehydrogenase
|
|
METHIONINE→ |
- generation of homocysteine: Methionine adenosyltransferase
- Adenosylhomocysteinase
- regeneration of methionine: Methionine synthase/Homocysteine methyltransferase
- Betaine-homocysteine methyltransferase
- conversion to cysteine: Cystathionine beta synthase
- Cystathionine gamma-lyase
|
|
THREONINE→ |
|
|
→succinyl-CoA→TCA |
- Propionyl-CoA carboxylase
- Methylmalonyl CoA epimerase
- Methylmalonyl-CoA mutase
|
|
|
G→fumarate |
PHENYLALANINE→tyrosine→ |
- Phenylalanine hydroxylase
- Tyrosine aminotransferase
- 4-Hydroxyphenylpyruvate dioxygenase
- Homogentisate 1,2-dioxygenase
- Fumarylacetoacetate hydrolase
- tyrosine→melanin: Tyrosinase
|
|
|
G→oxaloacetate |
asparagine→aspartate→ |
- Asparaginase/Asparagine synthetase
- Aspartate transaminase
|
|
|
|
Transferase: nitrogenous groups (EC 2.6)
|
|
2.6.1: Transaminases |
- Aspartate transaminase
- Alanine transaminase
- GABA transaminase
- Tyrosine aminotransferase
- Ornithine aminotransferase
- Branched chain aminotransferase
- Alanine—glyoxylate transaminase
|
|
2.6.3: Oximinotransferases |
|
|
2.6.99: Other |
- Pyridoxine 5'-phosphate synthase
|
|
Proteins: enzymes
|
|
Activity |
- Active site
- Binding site
- Catalytic triad
- Oxyanion hole
- Enzyme promiscuity
- Catalytically perfect enzyme
- Coenzyme
- Cofactor
- Enzyme catalysis
- Enzyme kinetics
- Lineweaver–Burk plot
- Michaelis–Menten kinetics
|
|
Regulation |
- Allosteric regulation
- Cooperativity
- Enzyme inhibitor
|
|
Classification |
- EC number
- Enzyme superfamily
- Enzyme family
- List of enzymes
|
|
Types |
- EC1 Oxidoreductases(list)
- EC2 Transferases(list)
- EC3 Hydrolases(list)
- EC4 Lyases(list)
- EC5 Isomerases(list)
- EC6 Ligases(list)
|
|
UpToDate Contents
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
English Journal
- Hot air treatment-induced arginine catabolism is associated with elevated polyamines and proline levels and alleviates chilling injury in postharvest tomato fruit.
- Zhang X1, Shen L, Li F, Meng D, Sheng J.Author information 1School of Agricultural and Food Engineering, Shandong University of Technology, Zibo, 255049, Shandong, People's Republic of China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China.AbstractBACKGROUND: To understand whether arginine catabolism might be involved in hot air (HA)-induced chilling tolerance mechanism in tomato fruit, we investigated the effect of HA treatment on endogenous arginine catabolism in relation to chilling injury.
- Journal of the science of food and agriculture.J Sci Food Agric.2013 Oct;93(13):3245-51. doi: 10.1002/jsfa.6166. Epub 2013 May 9.
- BACKGROUND: To understand whether arginine catabolism might be involved in hot air (HA)-induced chilling tolerance mechanism in tomato fruit, we investigated the effect of HA treatment on endogenous arginine catabolism in relation to chilling injury.RESULTS: Tomato fruit were harvested at mature gre
- PMID 23576244
- Hydrogen sulfide donor sodium hydrosulfide-improved heat tolerance in maize and involvement of proline.
- Li ZG1, Ding XJ, Du PF.Author information 1School of Life Sciences, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming 650092, PR China. zhongguang_li@163.comAbstractHydrogen sulfide (H2S) has long been considered as a phytotoxin, but nowadays as a cell signal molecule involved in growth, development, and the acquisition of stress tolerance in higher plants. In the present study, hydrogen sulfide donor, sodium hydrosulfide (NaHS), pretreatment markedly improved germination percentage of seeds and survival percentage of seedlings of maize under heat stress, and alleviated an increase in electrolyte leakage of roots, a decrease in tissue vitality and an accumulation of malondialdehyde (MDA) in coleoptiles of maize seedlings. In addition, pretreatment of NaHS could improve the activity of Δ(1)-pyrroline-5-carboxylate synthetase (P5CS) and lower proline dehydrogenase (ProDH) activity, which in turn induced accumulation of endogenous proline in maize seedlings. Also, application of proline could enhance endogenous proline content, followed by mitigated accumulation of MDA and increased survival percentage of maize seedlings under heat stress. These results suggest that sodium hydrosulfide pretreatment could improve heat tolerance of maize and the acquisition of this heat tolerance may be involved in proline.
- Journal of plant physiology.J Plant Physiol.2013 May 15;170(8):741-7. doi: 10.1016/j.jplph.2012.12.018. Epub 2013 Mar 21.
- Hydrogen sulfide (H2S) has long been considered as a phytotoxin, but nowadays as a cell signal molecule involved in growth, development, and the acquisition of stress tolerance in higher plants. In the present study, hydrogen sulfide donor, sodium hydrosulfide (NaHS), pretreatment markedly improved
- PMID 23523123
- Quantitative proteomic determination of diethylstilbestrol action on prostate cancer.
- Bigot P1, Mouzat K, Lebdai S, Bahut M, Benhabiles N, Tassin GC, Azzouzi AR, Cussenot O.Author information 1Department of Urology, Angers University Hospital, Angers 49933, France. pibigot@chu-angers.frAbstractDiethylstilbestrol (DES) has a direct cellular mechanism inhibition on prostate cancer. Its action is independent from the oestrogen receptors and is preserved after a first-line hormonal therapy. We aimed to identify proteins involved in the direct cellular inhibition effects of DES on prostate cancer. We used a clonogenic assay to establish the median lethal concentration of DES on 22RV1 cells. 22RV1 cells were exposed to standard and DES-enriched medium. After extraction, protein expression levels were obtained by two-dimensional differential in-gel electrophoresis (2D-DIGE) and isotope labelling tags for relative and absolute quantification (iTRAQ). Proteins of interest were analysed by quantitative RT-PCR and western blotting. The differentially regulated proteins (P<0.01) were interrogated against a global molecular network based on the ingenuity knowledge base. The 2D-DIGE analyses revealed DES-induced expression changes for 14 proteins (>1.3 fold; P<0.05). The iTRAQ analyses allowed the identification of 895 proteins. Among these proteins, 65 had a modified expression due to DES exposure (i.e., 23 overexpressed and 42 underexpressed). Most of these proteins were implicated in apoptosis and redox processes and had a predicted mitochondrial expression. Additionally, ingenuity pathway analysis placed the OAT and HSBP1 genes at the centre of a highly significant network. RT-PCR confirmed the overexpression of OAT (P=0.006) and HSPB1 (P=0.046).
- Asian journal of andrology.Asian J Androl.2013 May;15(3):413-20. doi: 10.1038/aja.2012.128. Epub 2013 Feb 25.
- Diethylstilbestrol (DES) has a direct cellular mechanism inhibition on prostate cancer. Its action is independent from the oestrogen receptors and is preserved after a first-line hormonal therapy. We aimed to identify proteins involved in the direct cellular inhibition effects of DES on prostate can
- PMID 23435471
Related Links
- Species, Scientific Experts, Genomes and Genes, Research Grants, Publications, Research Topics about ornithine oxo acid transaminase ... ..CREA binding-sites correspond very well to the CREA-binding consensus sequence ...
- Ornithine-Oxo-Acid Transaminase; Ornithine Transaminase; Ornithine Aminotransferase. On-line free medical diagnosis assistant. Ranked list of possible diseases from either several symptoms or a full patient history. A similarity ...
★リンクテーブル★
[★]
- 英
- ornithine-oxo-acid transaminase
[★]
雄ウシ、ウシ
- 関
- Bos taurus、bovine、bull、cattle、oxen
[★]
トランスアミナーゼ
[★]
オキソ酸
- 関
- oxoacid