オピオイドペプチド
WordNet
- amide combining the amino group of one amino acid with the carboxyl group of another; usually obtained by partial hydrolysis of protein
Wikipedia preview
出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2017/04/16 05:33:08」(JST)
[Wiki en表示]
Vertebrate endogenous opioids neuropeptide |
Identifiers |
Symbol |
Opiods_neuropep |
Pfam |
PF01160 |
InterPro |
IPR006024 |
PROSITE |
PDOC00964 |
Available protein structures: |
Pfam |
structures |
PDB |
RCSB PDB; PDBe; PDBj |
PDBsum |
structure summary |
|
Structural correlation between met-enkephalin, an opioid peptide,
(left) and morphine, an opiate drug,
(right)
Opioid peptides are peptides that bind to opioid receptors in the brain; opiates and opioids mimic the effect of these peptides. Such peptides may be produced by the body itself, for example endorphins. The effects of these peptides vary, but they all resemble those of opiates. Brain opioid peptide systems are known to play an important role in motivation, emotion, attachment behaviour, the response to stress and pain, and the control of food intake.
Opioid-like peptides may also be absorbed from partially digested food (casomorphins, exorphins, and rubiscolins). The opioid food peptides have lengths of typically 4–8 amino acids. The body's own opioids are generally much longer.
Opioid peptides are released by post-translational proteolytic cleavage of precursor proteins. The precursors consist of the following components: a signal sequence that precedes a conserved region of about 50 residues; a variable-length region; and the sequence of the neuropeptides themselves. Sequence analysis reveals that the conserved N-terminal region of the precursors contains 6 cysteines, which are probably involved in disulfide bond formation. It is speculated that this region might be important for neuropeptide processing.[1]
Contents
- 1 Endogenous opioids produced by the body
- 2 Opioid food peptides
- 3 Amphibian opioid peptides
- 4 Synthetic opioid peptides
- 5 References
- 6 External links
Endogenous opioids produced by the body
The human genome contains several homologous genes that are known to code for endogenous opioid peptides.
- The nucleotide sequence of the human gene for proopiomelanocortin (POMC) was characterized in 1980.[2] The POMC gene codes for endogenous opioids such as β-endorphin and gamma-endorphin.[3] The peptides with opioid activity that are derived from proopiomelanocortin comprise the class of endogenous opioid peptides called "endorphins".
- The human gene for the enkephalins was isolated and its sequence described in 1982.[4]
- The human gene for dynorphins (originally called the "Enkephalin B" gene because of sequence similarity to the enkephalin gene) was isolated and its sequence described in 1983.[5]
- The PNOC gene encoding prepronociceptin, which is cleaved into nociceptin and potentially two additional neuropeptides.[1]
- Adrenorphin, amidorphin, and leumorphin were discovered in the 1980s.
- The endomorphins were discovered in the 1990s.
- Opiorphin and spinorphin, enkephalinase inhibitors (i.e., prevent the metabolism of enkephalins).
- Hemorphins, hemoglobin-derived opioid peptides, including hemorphin-4, valorphin, and spinorphin, among others.
- While not peptides, codeine and morphine are also produced in the human body.[6]
Opioid food peptides
- Casomorphin (from casein found in milk of mammals, including cows)
- Gluten exorphin (from gluten found in wheat, rye, barley)
- Gliadorphin/gluteomorphin (from gluten found in wheat, rye, barley)
- Soymorphin-5 (from soybean)
- Rubiscolin (from spinach)
Amphibian opioid peptides
- Deltorphin I and II
- Dermorphin
Synthetic opioid peptides
- Zyklophin – semisynthetic KOR antagonist derived from dynorphin A
References
- ^ a b Mollereau C, Simons MJ, Soularue P, Liners F, Vassart G, Meunier JC, Parmentier M (August 1996). "Structure, tissue distribution, and chromosomal localization of the prepronociceptin gene". Proc. Natl. Acad. Sci. U.S.A. 93 (16): 8666–70. doi:10.1073/pnas.93.16.8666. PMC 38730. PMID 8710928.
- ^ Chang AC, Cochet M, Cohen SN (August 1980). "Structural organization of human genomic DNA encoding the pro-opiomelanocortin peptide". Proc. Natl. Acad. Sci. U.S.A. 77 (8): 4890–4. doi:10.1073/pnas.77.8.4890. PMC 349954. PMID 6254047.
- ^ Ling N, Burgus R, Guillemin R (November 1976). "Isolation, primary structure, and synthesis of alpha-endorphin and gamma-endorphin, two peptides of hypothalamic-hypophysial origin with morphinomimetic activity". Proc. Natl. Acad. Sci. U.S.A. 73 (11): 3942–6. doi:10.1073/pnas.73.11.3942. PMC 431275. PMID 1069261.
- ^ Noda M, Teranishi Y, Takahashi H, Toyosato M, Notake M, Nakanishi S, Numa S (June 1982). "Isolation and structural organization of the human preproenkephalin gene". Nature. 297 (5865): 431–4. doi:10.1038/297431a0. PMID 6281660.
- ^ Horikawa S, Takai T, Toyosato M, Takahashi H, Noda M, Kakidani H, et al. (Dec 1983). "Isolation and structural organization of the human preproenkephalin B gene". Nature. 306 (5943): 611–4. doi:10.1038/306611a0. PMID 6316163.
- ^ Stefano GB, Ptáček R, Kuželová H, Kream RM (2012). "Endogenous morphine: up-to-date review 2011" (PDF). Folia Biol. (Praha). 58 (2): 49–56. PMID 22578954.
Positive evolutionary pressure has apparently preserved the ability to synthesize chemically authentic morphine, albeit in homeopathic concentrations, throughout animal phyla. ... The apparently serendipitous finding of an opiate alkaloid-sensitive, opioid peptide-insensitive, µ3 opiate receptor subtype expressed by invertebrate immunocytes, human blood monocytes, macrophage cell lines, and human blood granulocytes provided compelling validating evidence for an autonomous role of endogenous morphine as a biologically important cellular signalling molecule (Stefano et al., 1993; Cruciani et al., 1994; Stefano and Scharrer, 1994; Makman et al., 1995). ... Human white blood cells have the ability to make and release morphine
External links
- Opioid Peptides at the US National Library of Medicine Medical Subject Headings (MeSH)
Peptides: neuropeptides
|
|
Hormones |
see hormones
|
|
Opioid peptides |
Dynorphins
|
- Big dynorphin
- Dynorphin A
- Dynorphin B
- Leumorphin
|
|
Endomorphins
|
- Endomorphin-1
- Endomorphin-2
|
|
Endorphins
|
- α-Endorphin
- β-Endorphin
- γ-Endorphin
- α-Neoendorphin
- β-Neoendorphin
|
|
Enkephalins
|
- Met-enkephalin
- Leu-enkephalin
|
|
Others
|
- Adrenorphin
- Amidorphin
- Hemorphin
- Nociceptin
- Opiorphin
- Spinorphin
- Valorphin
|
|
|
Other
neuropeptides |
Kinins
|
- Tachykinins: mammal
- Substance P
- Neurokinin A
- Neurokinin B
- amphibian
|
|
Neuromedins
|
|
|
Orexins
|
|
|
Other
|
- Angiotensin
- Bombesin
- Calcitonin gene-related peptide
- Carnosine
- Cocaine and amphetamine regulated transcript
- Delta sleep-inducing peptide
- FMRFamide
- Galanin
- Galanin-like peptide
- Gastrin releasing peptide
- Ghrelin
- Neuropeptide AF
- Neuropeptide FF
- Neuropeptide SF
- Neuropeptide VF
- Neuropeptide S
- Neuropeptide Y
- Neurophysins
- Neurotensin
- Pancreatic polypeptide
- Pituitary adenylate cyclase activating peptide
- RVD-Hpα
- VGF
|
|
Opioid receptor modulators
|
|
MOR |
|
|
DOR |
|
|
KOR |
- Agonists: 6'-GNTI
- 8-CAC
- 18-MC
- 14-Methoxymetopon
- β-Chlornaltrexamine
- β-Funaltrexamine
- Adrenorphin (metorphamide)
- Akuuamicine
- Alazocine
- Allomatrine
- Asimadoline
- BAM-12P
- BAM-18P
- BAM-22P
- Big dynorphin
- Bremazocine
- BRL-52537
- Butorphan
- Butorphanol
- BW-373U86
- Cebranopadol
- Ciprefadol
- CR665
- Cyclazocine
- Cyclorphan
- Cyprenorphine
- Diamorphine (heroin)
- Diacetylnalorphine
- Difelikefalin
- Dihydroetorphine
- Dihydromorphine
- Diprenorphine
- Dynorphin A
- Dynorphin B (rimorphin)
- Eluxadoline
- Enadoline
- Eptazocine
- Erinacine E
- Ethylketazocine
- Etorphine
- Fedotozine
- Fentanyl
- Gemazocine
- GR-89696
- GR-103545
- Hemorphin-4
- Herkinorin
- HS665
- Hydromorphone
- HZ-2
- Ibogaine
- ICI-199,441
- ICI-204,448
- Ketamine
- Ketazocine
- Laudanosine
- Leumorphin (dynorphin B-29)
- Levallorphan
- Levomethorphan
- Levorphanol
- Lexanopadol
- Lofentanil
- LPK-26
- Lufuradom
- Matrine
- MB-1C-OH
- Menthol
- Metazocine
- Metkefamide
- Mianserin
- Mirtazapine
- Morphine
- Moxazocine
- MR-2034
- N-MPPP
- Nalbuphine
- Nalbuphine sebacate
- NalBzOH
- Nalfurafine
- Nalmefene
- Nalodeine (N-allylnorcodeine)
- Nalorphine
- Naltriben
- Niravoline
- Norbuprenorphine
- Norbuprenorphine-3-glucuronide
- Noribogaine
- Norketamine
- O-Desmethyltramadol
- Oripavine
- Oxilorphan
- Oxycodone
- Pentazocine
- Pethidine (meperidine)
- Phenazocine
- Proxorphan
- Racemethorphan
- Racemorphan
- RB-64
- Salvinorin A (salvia)
- Salvinorin B ethoxymethyl ether
- Salvinorin B methoxymethyl ether
- Samidorphan
- SKF-10047
- Spiradoline (U-62,066)
- TH-030418
- Thienorphine
- Tifluadom
- Tricyclic antidepressants (e.g., amitriptyline, desipramine, imipramine, nortriptyline)
- U-50,488
- U-54,494A
- U-69,593
- Xorphanol
- Antagonists: 4′-Hydroxyflavanone
- 4',7-Dihydroxyflavone
- 5'-GNTI
- 6'-GNTI
- 6β-Naltrexol
- 6β-Naltrexol-d4
- β-Chlornaltrexamine
- Buprenorphine/samidorphan
- Amentoflavone
- ANTI
- Apigenin
- Arodyne
- AT-076
- Axelopran
- AZ-MTAB
- Binaltorphimine
- BU09059
- Buprenorphine
- Catechin
- Catechin gallate
- CERC-501 (LY-2456302)
- Clocinnamox
- Cyclofoxy
- Dezocine
- DIPPA
- EGC
- ECG
- Epicatechin
- Hyperoside
- JDTic
- LY-255582
- LY-2196044
- LY-2444296
- LY-2459989
- LY-2795050
- MeJDTic
- Methylnaltrexone
- ML190
- ML350
- MR-2266
- N-Fluoropropyl-JDTic
- Naloxone
- Naltrexone
- Naltrindole
- Naringenin
- Norbinaltorphimine
- Noribogaine
- Pawhuskin A
- PF-4455242
- RB-64
- Quadazocine
- Taxifolin
- UPHIT
- Zyklophin
- Unknown/unsorted: Akuammicine
- Akuammine
- Coronaridine
- Cyproterone acetate
- Dihydroakuuamine
- Ibogamine
- Tabernanthine
|
|
NOP |
- Agonists: (Arg14,Lys15)Nociceptin
- ((pF)Phe4)Nociceptin(1-13)NH2
- (Phe1Ψ(CH2-NH)Gly2)Nociceptin(1-13)NH2
- Ac-RYYRWK-NH2
- Ac-RYYRIK-NH2
- BU08070
- Buprenorphine
- Cebranopadol
- Dihydroetorphine
- Etorphine
- JNJ-19385899
- Levomethorphan
- Levorphanol
- Levorphanol
- Lexanopadol
- MCOPPB
- MT-7716
- NNC 63-0532
- Nociceptin (orphanin FQ)
- Nociceptin (1-11)
- Nociceptin (1-13)NH2
- Norbuprenorphine
- Racemethorphan
- Racemorphan
- Ro64-6198
- Ro65-6570
- SCH-221510
- SCH-486757
- SR-8993
- SR-16435
- TH-030418
- Antagonists: (Nphe1)Nociceptin(1-13)NH2
- AT-076
- BAN-ORL-24
- J-113397
- JTC-801
- LY-2940094
- NalBzOH
- Nociceptin (1-7)
- Nocistatin
- SB-612111
- SR-16430
- Thienorphine
- Trap-101
- UFP-101
|
|
Unsorted |
- β-Casomorphins
- Amidorphin
- BAM-20P
- Cytochrophin-4
- Deprolorphin
- Gliadorphin (gluteomorphin)
- Gluten exorphins
- Hemorphins
- Kava constituents
- MEAGL
- MEAP
- NEM
- Neoendorphins
- Nepetalactone (catnip)
- Peptide B
- Peptide E
- Peptide F
- Peptide I
- Rubiscolins
- Soymorphins
|
|
Others |
- Enkephalinase inhibitors: Amastatin
- BL-2401
- Candoxatril
- D -Phenylalanine
- Dexecadotril (retorphan)
- Ecadotril (sinorphan)
- Kelatorphan
- Racecadotril (acetorphan)
- RB-101
- RB-120
- RB-3007
- Opiorphan
- Selank
- Semax
- Spinorphin
- Thiorphan
- Tynorphin
- Ubenimex (bestatin)
- Propeptides: β-Lipotropin (proendorphin)
- Prodynorphin
- Proenkephalin
- Pronociceptin
- Proopiomelanocortin (POMC)
- Others: Kyotorphin (met-enkephalin releaser/degradation stabilizer)
|
|
See also: Peptide receptor modulators
|
This article incorporates text from the public domain Pfam and InterPro IPR006024
UpToDate Contents
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
English Journal
- The influence of the new enkephalin derivative, cyclo[N(ε),N(β)-carbonyl-d-Lys(2),Dap(5)] enkephalinamide (cUENK6), on reinstatement of ethanol-induced conditioned place preference in rats.
- Gibula-Bruzda E1, Marszalek-Grabska M2, Gawel K2, Witkowska E3, Izdebski J3, Kotlinska JH2.
- Physiology & behavior.Physiol Behav.2015 Jun 1;145:50-6. doi: 10.1016/j.physbeh.2015.03.031. Epub 2015 Mar 26.
- The aim of the present study was to determine whether a new cyclic analog of enkephalin, cyclo[N(ε),N(β)-carbonyl-d-Lys(2),Dap(5)] enkephalinamide (cUENK6), a preferential μ-(MORs), and, to a lower extent, a δ-opioid receptor (DORs) agonist in vitro, could reinstate ethanol-induced conditioned p
- PMID 25817357
- Characterization of cyclic peptides containing disulfide bonds.
- Johnson M1, Liu M1, Struble E1, Hettiarachchi K2.
- Journal of pharmaceutical and biomedical analysis.J Pharm Biomed Anal.2015 May 10;109:112-20. doi: 10.1016/j.jpba.2015.01.009. Epub 2015 Jan 22.
- Unlike linear peptides, analysis of cyclic peptides containing disulfide bonds is not straightforward and demands indirect methods to achieve a rigorous proof of structure. Three peptides that belong to this category, p-Cl-Phe-DPDPE, DPDPE, and CTOP, were analyzed and the results are presented in th
- PMID 25778927
- Antihypertensive Peptides of Animal Origin: A Review.
- Bhat ZF1, Kumar S, Bhat HF.
- Critical reviews in food science and nutrition.Crit Rev Food Sci Nutr.2015 May 5:0. [Epub ahead of print]
- Many bioactive peptides trigger certain useful antihypertensive activities in the living body system and there is a mounting worldwide interest in the therapeutic potential of these bioactive peptides for exploitation in vivo against the hypertension. Studies suggest the antihypertensive properties
- PMID 25942011
Japanese Journal
- 長鎖脂肪酸受容体G protein-coupled receptor 40 (GPR40) を介した docosahexaenoic acid (DHA) の抗侵害作用機構
- 中本 賀寿夫,西中 崇,里 尚也 [他],万倉 三正,小山 豊,徳山 尚吾
- 薬学雑誌. 乙号 134(3), 397-403, 2014
- … Recently, we have also demonstrated that the release of an endogenous opioid peptide, β-endorphin, plays an important role in the induction of docosahexaenoic acid (DHA)-induced antinociception. … In the peripheral area, GPR40 is preferentially expressed in pancreatic β-cells and is known to relate to the secretion of hormone and peptides. …
- NAID 130003391182
- 鎮痛ペプチドを介した好中球の新しい生理機能 : 性周期の維持と痛みの制御
- 生体分子の立体構造と分子間相互作用の研究を振り返って
- 石田 寿昌
- 薬学雑誌. 乙号 132(7), 785-816, 2012
- … Herein, the following five subjects are reviewed: (1) function-linked conformations of biomolecules including natural annular products, opioid peptides and neuropeptides; …
- NAID 130001888694
Related Links
- VOL. 21, NO. 2, 1997 135 reinforcing properties of alcohol rather than by inducing illness, as does disulfiram (Antabuse®). The second line of evidence suggesting that endogenous opioid peptides are involved in regulating alcohol ...
- 1. FEBS Lett. 1992 Jan 13;296(1):107-11. Opioid peptides derived from wheat gluten: their isolation and characterization. Fukudome S(1), Yoshikawa M. Author information: (1)Research Control Department ...
★リンクテーブル★
[★]
- 英
- opioid peptide, opioid peptides
- 同
- 内因性モルヒネ様物質 endogenous morphine like substance
[★]
オピオイド
- 同
- opioids