ラクトコッカス・ラクティス、ラクチス乳酸菌、ラクチス菌
- 関
- L. lactis
Wikipedia preview
出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/08/11 18:51:53」(JST)
[Wiki en表示]
Lactococcus lactis |
|
Scientific classification |
Domain: |
Bacteria |
Kingdom: |
Eubacteria |
Phylum: |
Firmicutes |
Class: |
Bacilli |
Order: |
Lactobacillales |
Family: |
Streptococcaceae |
Genus: |
Lactococcus |
Species: |
L. lactis |
Binomial name |
Lactococcus lactis
(Lister 1873)
Schleifer et al. 1986 |
Subspecies |
L. l. cremoris
L. l. hordniae
L. l. lactis
L. l. lactis bv. diacetylactis
L. l. tructae
|
Lactococcus lactis is a Gram-positive bacterium used extensively in the production of buttermilk and cheese,[1] but has also become famous as the first genetically modified organism to be used alive for the treatment of human disease.[2] L. lactis cells are cocci that group in pairs and short chains, and, depending on growth conditions, appear ovoid with typically 0.5 - 1.5 µm in length. L. lactis does not produce spores (nonsporulating) and are not motile (nonmotile). They have a homofermentative metabolism and have been reported to produce exclusive L-(+)-lactic acid.[3] However,[4] reported D-(−)-lactic acid can be produced when cultured at low pH. The capability to produce lactic acid is one of the reasons why L. lactis is one of the most important microorganisms in the dairy industry.[5] Based on its history in food fermentation L. lactis has the GRAS status (Generally Regarded As Safe) [6][7] with few case reports of being an opportunistic pathogen.[8][9][10] L. lactis is of crucial importance for manufacturing dairy products, such as buttermilk and cheeses. When L. lactis ssp. lactis is added to milk, the bacterium uses enzymes to produce energy molecules (ATP), from lactose. The byproduct of ATP energy production is lactic acid. The lactic acid produced by the bacterium curdles the milk that then separates to form curds, which are used to produce cheese.[11] Other uses that have been reported for this bacterium include the production of pickled vegetables, beer or wine, some breads, and other fermented foodstuffs, such as soymilk kefir, buttermilk, and others.[12] L. lactis is one of the best characterized low GC Gram positive bacteria with detailed knowledge on genetics, metabolism and biodiversity.[13][14]
L. lactis is mainly isolated from either the dairy environment or plant material.[15][16][17] Dairy isolates are suggested to have evolved from plant isolates through a process in which genes without benefit in the rich medium milk were either lost or down-regulated.[14][18] This process, also called genome erosion or reductive evolution is also described in several other lactic acid bacteria.[19][20] The proposed transition from the plant to the dairy environment was reproduced in the laboratory through experimental evolution of a plant isolate that was cultivated in milk for a prolonged period. Consistent with the results from comparative genomics (see references above) this resulted in L. lactis losing or down-regulating genes which are dispensable in milk and the up-regulation of peptide transport.[21]
Cheese production
L. lactis subsp. lactis (formerly Streptococcus lactis[22]) is used in the early stages for the production of many cheeses, including Brie, Camembert, Cheddar, Colby, Gruyère, Parmesan, and Roquefort.[23] The state Assembly of Wisconsin, also the number one cheese-producing state in the United States, voted in 2010 to name this bacterium as the official state microbe. It would have been the first and only such designation by a state legislature in the nation,[24] however the legislation was not picked up by the Senate.[25]
The use of L. lactis in dairy factories is not without issues. Bacteriophages specific to L. lactis cause significant economic losses each year by preventing the bacteria from fully metabolizing the milk substrate.[23] Several epidemiologic studies showed the phages mainly responsible for these losses are from the species 936, c2, and P335 (all from the family Siphoviridae).[26]
References
- ^ Madigan M, Martinko J (editors). (2005). Brock Biology of Microorganisms (11th ed.). Prentice Hall. ISBN 0-13-144329-1.
- ^ Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon JP, van Deventer SJ, Neirynck S, Peppelenbosch MP, Steidler L. (2006). "A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn's disease.". Clin Gastroenterol Hepatol. 4 (6): 754–759. doi:10.1016/j.cgh.2006.03.028. PMID 16716759.
- ^ ROISSART, H. and Luquet F.M. Bactéries lactiques: aspects fondamentaux et technologiques. Uriage, Lorica, France, 1994, vol. 1, p. 605. ISBN 2-9507477-0-1
- ^ Åkerberg, C.; Hofvendahl, K.; Zacchi, G.; Hahn-Hä;gerdal, B. (1998). "Modelling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production by Lactococcus lactis ssp. Lactis ATCC 19435 in whole-wheat flour". Applied Microbiology and Biotechnology 49 (6): 682–690. doi:10.1007/s002530051232.
- ^ Integr8 - Species search results:
- ^ FDA. "History of the GRAS List and SCOGS Reviews". FDA. Retrieved 11 May 2012.
- ^ Wessels, S., Axelsson, L., Bech Hansen, E., De Vuyst, L., Laulund, S., Lähteenmäki, L., Lindgren, S. et al. (November 2004). "The lactic acid bacteria, the food chain, and their regulation.". Trends in Food Science & Technology 15 (10): 498–505. doi:10.1016/j.tifs.2004.03.003.
- ^ Aguirre M, Collins MD (August 1993). "Lactic acid bacteria and human clinical infection". J. Appl. Bacteriol. 75 (2): 95–107. doi:10.1111/j.1365-2672.1993.tb02753.x. PMID 8407678.
- ^ Facklam RR, Pigott NE, Collins MD. Identification of Lactococcus species from human sources. Proceedings of the XI Lancefield International Symposium on Streptococci and Streptococcal Diseases, Siena, Italy. Stuttgart: Gustav Fischer Verlag; 1990:127
- ^ Mannion PT, Rothburn MM (November 1990). "Diagnosis of bacterial endocarditis caused by Streptococcus lactis and assisted by immunoblotting of serum antibodies". J. Infect. 21 (3): 317–8. doi:10.1016/0163-4453(90)94149-T. PMID 2125626.
- ^ Lactococcus_lactis
- ^ Lactococcus lactis uses
- ^ Kok, J., Buist, G., Zomer, A. L., van Hijum, S. a F. T., & Kuipers, O. P. (2005). "Comparative and functional genomics of lactococci.". FEMS Microbiology Reviews 29 (3): 411–33. doi:10.1016/j.femsre.2005.04.004.
- ^ a b van Hylckama Vlieg, Johan E T, Rademaker, J. L. W., Bachmann, H., Molenaar, D., Kelly, W. J., & Siezen, R. J. (2006). "Natural diversity and adaptive responses of Lactococcus lactis.". Current opinion in biotechnology 17 (2): 183–90. doi:10.1016/j.copbio.2006.02.007.
- ^ Kelly, W. J., Ward, L. J. H., & Leahy, S. C. (2010). "Chromosomal diversity in Lactococcus lactis and the origin of dairy starter cultures.". Genome biology and evolution 2: 729–44. doi:10.1093/gbe/evq056.
- ^ Passerini, D., Beltramo, C., Coddeville, M., Quentin, Y., Ritzenthaler, P., Daveran-Mingot, M.-L., & Le Bourgeois, P. (2010). "Genes but Not Genomes Reveal Bacterial Domestication of Lactococcus Lactis.". PLoS ONE 5 (12): e15306. doi:10.1371/journal.pone.0015306.
- ^ Rademaker, J. L. W., Herbet, H., Starrenburg, M. J. C., Naser, S. M., Gevers, D., Kelly, W. J., Hugenholtz, J. et al. (2007). "Diversity analysis of dairy and nondairy Lactococcus lactis isolates, using a novel multilocus sequence analysis scheme and (GTG)5-PCR fingerprinting.". Applied and environmental microbiology 73 (22): 7128–37. doi:10.1128/AEM.01017-07.
- ^ Siezen, R. J., Starrenburg, M. J. C., Boekhorst, J., Renckens, B., Molenaar, D., & van Hylckama Vlieg, J. E. T. (2008). "Genome-scale genotype-phenotype matching of two Lactococcus lactis isolates from plants identifies mechanisms of adaptation to the plant niche.". Applied and environmental microbiology 74 (2): 424–36. doi:10.1128/AEM.01850-07.
- ^ Bolotin, A., Quinquis, B., Renault, P., Sorokin, A., Ehrlich, S. D., Kulakauskas, S., Lapidus, A. et al. (2004). "Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus.". Nature Biotechnology 22 (12): 1554–8. doi:10.1038/nbt1034. PMID 15543133.
- ^ van de Guchte, M., Penaud, S., Grimaldi, C., Barbe, V., Bryson, K., Nicolas, P., Robert, C. et al. (2006). "The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution.". Proceedings of the National Academy of Sciences of the United States of America 103 (24): 9274–9. doi:10.1073/pnas.0603024103.
- ^ Bachmann, H., Starrenburg, M. J. C., Molenaar, D., Kleerebezem, M., & van Hylckama Vlieg, J. E. T. (2012). "Microbial domestication signatures of Lactococcus lactis can be reproduced by experimental evolution.". Genome Research 22 (1): 115–24. doi:10.1101/gr.121285.111.
- ^ Chopin MC, Chopin A, Rouault A, Galleron N (1 July 1989). "Insertion and amplification of foreign genes in the Lactococcus lactis subsp. lactis chromosome" (PDF). Appl. Environ. Microbiol. 55 (7): 1769–74. PMC 202949. PMID 2504115.
- ^ a b Coffey A, Ross RP (2002). "Bacteriophage-resistance systems in dairy starter strains: molecular analysis to application". Antonie Van Leeuwenhoek 82 (1–4): 303–21. doi:10.1023/A:1020639717181. PMID 12369198.
- ^ Davey, Monica (April 15, 2010). "And Now, a State Microbe.". New York Times. Retrieved April 19, 2010.
- ^ "No State Microbe For Wisconsin". National Public Radio. Retrieved 28 October 2011.
- ^ Madera C, Monjardin C, Suarez JE (2004). "Milk contamination and resistance to processing conditions determine the fate of Lactococcus lactis bacteriophages in dairies". Appl Environ Microbiol 70 (12): 7365–71. doi:10.1128/AEM.70.12.7365-7371.2004. PMC 535134. PMID 15574937.
UpToDate Contents
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
English Journal
- Microcalorimetric study of the growth of bacterial colonies of Lactococcus lactis IL1403 in agar gels.
- Kabanova N, Stulova I, Vilu R.SourceTallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia. nataljakabanova@yahoo.com
- Food microbiology.Food Microbiol.2012 Feb;29(1):67-79. Epub 2011 Aug 26.
- Growth of Lactococcus lactis IL1403 in solid agar gels and liquid cultures at different glucose concentrations of 2, 10 and 20 g/L and different inoculation rates from 10(0) to 10(6) cfu/mL with the 10-fold increment was studied using thermal activity monitor TAM III. In parallel to calorimetric mea
- PMID 22029920
- Biodiversity and growth dynamics of lactic acid bacteria in artisanal PDO Ossau-Iraty cheeses made from raw ewe's milk with different starters.
- Feutry F, Oneca M, Berthier F, Torre P.SourceSyndicat de défense de l'AOC Ossau-Iraty, 64120 Ostabat-Asme, France. syndicat.ossau-iraty@wanadoo.fr
- Food microbiology.Food Microbiol.2012 Feb;29(1):33-42. Epub 2011 Aug 17.
- The biodiversity and growth dynamics of Lactic Acid Bacteria (LAB) in farm-house Ossau-Iraty cheeses were investigated from vat milk to 180 days of ripening in six independent batches made from six raw ewe's milks using five typical cheese-making methods. Commercial starter S1 was used for three bat
- PMID 22029916
- Arginine metabolism in sugar deprived Lactococcus lactis enhances survival and cellular activity, while supporting flavour production.
- Brandsma JB, van de Kraats I, Abee T, Zwietering MH, Meijer WC.SourceCSK food enrichment, The Netherlands. h.brandsma@cskfood.com
- Food microbiology.Food Microbiol.2012 Feb;29(1):27-32. Epub 2011 Aug 12.
- Flavour development in cheese is affected by the integrity of Lactococcus lactis cells. Disintegrated cells enhance for instance the enzymatic degradation of casein to free amino acids, while integer cells are needed to produce specific flavour compounds from amino acids. The impact of the cellular
- PMID 22029915
Japanese Journal
- Suppression of Oral Tolerance by Lactococcus lactis in Mice
- SAKAI Tohru,HIROTA Yuko,NAKAMOTO Mariko,SHUTO Emi,HOSAKA Toshio,MAKINO Seiya,IKEGAMI Shuji
- Bioscience, biotechnology, and biochemistry 75(3), 599-601, 2011-03-23
- … Although oral ovabumin (OVA) administration suppressed the antibody (Ab) response in OVA-immunized mice, Lactococcus lactis increased OVA-specific IgG2a in these mice. … lactis increased the casein-specific IgG level in NC/Nga mice fed on a casein diet. … lactis-fed DO11.10 mice. …
- NAID 10028202184
- Functional Compounds in Fermented Buckwheat Sprouts
- MAEJIMA Yasunori,NAKATSUGAWA Hiroki,ICHIDA Daiki,MAEJIMA Mayumi,AOYAGI Yasuo,MAOKA Takashi,ETOH Hideo
- Bioscience, Biotechnology, and Biochemistry 75(9), 1708-1712, 2011
- … The major strains were found to include Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus pentosus, Lactococcus lactis subsp. … lactis, and Pediococcus pentosaceus in an investigation of the lactic acid bacteria. …
- NAID 130000940066
- Effect of Lactic Fermentation on Antioxidant Capacity of Rye Sourdough and Bread
- BANU Iuliana,VASILEAN Ina,APRODU Iuliana
- Food science and technology research 16(6), 571-576, 2010-11-01
- … Effect of sourdough fermentation, by different starter culture (lactic acid bacteria Lactococcus lactis ssp. … Lactis, Weissella confusa, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus helveticus, and yeast Kluyveromyces marxianus subsp. …
- NAID 10027497883
Related Links
- Lactococcus lactis Description and significance Lactococcus lactis is a spherical-shaped, Gram-positive bacterium used widely for industrial production of fermented dairy products such as milk, cheese, and yogurt. These are ...
- Lactococcus lactis is a Gram-positive bacterium used extensively in the production of buttermilk and cheese, [1] but has recently also become famous as the first genetically modified organism to be used alive for the treatment of ...
Related Pictures
★リンクテーブル★
[★]
- ラ
- Lactococcus lactis
- 関
- ラクトコッカス・ラクティス、ラクチス乳酸菌
[★]
- ラ
- Lactococcus lactis
- 関
- ラクトコッカス・ラクティス、ラクチス菌
[★]
- ラ
- Lactococcus lactis、L. lactis
- 関
- ラクチス乳酸菌、ラクチス菌
[★]
- 関
- Lactococcus lactis
[★]
ラクトコッカス、乳酸球菌、クトコッカス属、ラクトコックス属、Lactococcus属
- 関
- lactococcal、lactococci
[★]