"Adrenaline" and "Adrenalin" redirect here. For other uses, see Adrenaline (disambiguation).
(R)-(–)-L-Epinephrine or (R)-(–)-L-adrenaline
|
|
Systematic (IUPAC) name |
(R)-4-(1-hydroxy-
2-(methylamino)ethyl)benzene-1,2-diol |
Clinical data |
AHFS/Drugs.com |
monograph |
MedlinePlus |
a603002 |
Pregnancy cat. |
A (AU) C (US) |
Legal status |
Prescription Only (S4) (AU) POM (UK) ℞-only (US) |
Routes |
IV, IM, endotracheal, IC |
Pharmacokinetic data |
Bioavailability |
Nil (oral) |
Metabolism |
adrenergic synapse (MAO and COMT) |
Half-life |
2 minutes |
Excretion |
Urine |
Identifiers |
CAS number |
51-43-4 Y |
ATC code |
A01AD01 B02BC09 C01CA24 R01AA14 R03AA01 S01EA01 |
PubChem |
CID 5816 |
IUPHAR ligand |
509 |
DrugBank |
DB00668 |
ChemSpider |
5611 Y |
UNII |
YKH834O4BH Y |
KEGG |
D00095 Y |
ChEBI |
CHEBI:28918 Y |
ChEMBL |
CHEMBL679 Y |
Chemical data |
Formula |
C9H13NO3 |
Mol. mass |
183.204 g/mol |
SMILES |
eMolecules & PubChem |
InChI
-
InChI=1S/C9H13NO3/c1-10-5-9(13)6-2-3-7(11)8(12)4-6/h2-4,9-13H,5H2,1H3/t9-/m0/s1 Y
Key:UCTWMZQNUQWSLP-VIFPVBQESA-N Y
|
Y (what is this?) (verify)
|
Epinephrine (also known as adrenaline) is a hormone and a neurotransmitter.[1] It increases heart rate, constricts blood vessels, dilates air passages and participates in the fight-or-flight response of the sympathetic nervous system.[2] In chemical terms, adrenaline is one of a group of monoamines called the catecholamines. It is produced in some neurons of the central nervous system, and in the chromaffin cells of the adrenal medulla from the amino acids phenylalanine and tyrosine.[3]
Extracts of the adrenal gland were first obtained by Polish physiologist Napoleon Cybulski in 1895. These extracts, which he called nadnerczyna, contained adrenaline and other catecholamines.[4] Japanese chemist Jokichi Takamine and his assistant Keizo Uenaka independently discovered adrenaline in 1900.[5][6] In 1901, Takamine successfully isolated and purified the hormone from the adrenal glands of sheep and oxen.[7] Adrenaline was first synthesized in the laboratory by Friedrich Stolz and Henry Drysdale Dakin, independently, in 1904.[6]
Contents
- 1 Medical uses
- 1.1 Cardiac arrest
- 1.2 Anaphylaxis
- 1.3 Croup
- 1.4 In local anesthetics
- 1.5 Autoinjectors
- 2 Adverse effects
- 3 Measurement in biological fluids
- 4 Mechanism of action
- 5 Biosynthesis and regulation
- 6 Chemical synthesis
- 7 Adrenaline junkie
- 8 Terminology
- 9 Notes
- 10 References
- 11 External links
|
Medical uses
Epinephrine ampoule, 1 mg (Suprarenin)
Adrenaline is used to treat a number of conditions including: cardiac arrest, anaphylaxis, and superficial bleeding.[8] It has been used historically for bronchospasm and hypoglycemia, but newer treatments for these, such as salbutamol, a synthetic epinephrine derivative, and dextrose, respectively, are currently preferred.[8]
Cardiac arrest
Adrenaline is used as a drug to treat cardiac arrest and other cardiac dysrhythmias resulting in diminished or absent cardiac output. Its actions are to increase peripheral resistance via α1receptor-dependent vasoconstriction and to increase cardiac output via its binding to β1 receptors.
Anaphylaxis
Due to its vasoconstrictive effects, adrenaline is the drug of choice for treating anaphylaxis. Allergy[9] patients undergoing immunotherapy may receive an adrenaline rinse before the allergen extract is administered, thus reducing the immune response to the administered allergen. It is also used as a bronchodilator for asthma if specific β2 agonists are unavailable or ineffective.[10]
Because of various expressions of α1 or β2 receptors, depending on the patient, administration of adrenaline may raise or lower blood pressure, depending on whether or not the net increase or decrease in peripheral resistance can balance the positive inotropic and chronotropic effects of adrenaline on the heart, effects that increase the contractility and rate, respectively, of the heart.[citation needed]
The usual concentration for SQ or IM injection is 0.3 - 0.5 mg 1:1,000.
Croup
Racemic epinephrine has historically been used for the treatment of croup.[11][12] Racemic adrenaline is a 1:1 mixture of the dextrorotatory (d) and levorotatory (l) isomers of adrenaline.[13] The l- form is the active component.[13] Racemic adrenaline works by stimulation of the α-adrenergic receptors in the airway, with resultant mucosal vasoconstriction and decreased subglottic edema, and by stimulation of the β-adrenergic receptors, with resultant relaxation of the bronchial smooth muscle.[12]
In local anesthetics
Adrenaline is added to injectable forms of a number of local anesthetics, such as bupivacaine and lidocaine, as a vasoconstrictor to slow the absorption and, therefore, prolong the action of the anesthetic agent. Some of the adverse effects of local anesthetic use, such as apprehension, tachycardia, and tremor, may be caused by adrenaline.[14]
Autoinjectors
Adrenaline is available in an autoinjector delivery system. EpiPens, Anapens, and Twinjects all use adrenaline as their active ingredient. Twinjects contain a second dose of adrenaline in a separate syringe and needle delivery system contained within the body of the autoinjector.
Though both EpiPen and Twinject are trademark names, common usage of the terms is drifting toward the generic context of any adrenaline autoinjector.[citation needed]
Adverse effects
Adverse reactions to adrenaline include palpitations, tachycardia, arrhythmia, anxiety, headache, tremor, hypertension, and acute pulmonary edema.[15]
Use is contraindicated in people on nonselective β-blockers, because severe hypertension and even cerebral hemorrhage may result.[16] Although commonly believed that administration of adrenaline may cause heart failure by constricting coronary arteries, this is not the case. Coronary arteries have only β2 receptors, which cause vasodilation in the presence of adrenaline.[17] Even so, administering high-dose adrenaline has not been definitively proven to improve survival or neurologic outcomes in adult victims of cardiac arrest.[18]
Measurement in biological fluids
Adrenaline may be quantitated in blood, plasma, or serum as a diagnostic aid, to monitor therapeutic administration, or to identify the causative agent in a potential poisoning victim. Endogenous plasma adrenaline concentrations in resting adults are normally less than 10 ng/L, but may increase by 10-fold during exercise and by 50-fold or more during times of stress. Pheochromocytoma patients often have plasma adrenaline levels of 1000-10,000 ng/L. Parenteral administration of adrenaline to acute-care cardiac patients can produce plasma concentrations of 10,000 to 100,000 ng/L.[19][20]
Mechanism of action
See also: Adrenergic receptor
As a hormone and neurotransmitter, adrenaline acts on nearly all body tissues. Its actions vary by tissue type and tissue expression of adrenergic receptors. For example, adrenaline causes smooth muscle relaxation in the airways but causes contraction of the smooth muscle that lines most arterioles.
Adrenaline acts by binding to a variety of adrenergic receptors. Adrenaline is a nonselective agonist of all adrenergic receptors, including α1, α2, β1, β2, and β3 receptors.[16] Epinephrine's binding to these receptors triggers a number of metabolic changes. Binding to α-adrenergic receptors inhibits insulin secretion by the pancreas, stimulates glycogenolysis in the liver and muscle, and stimulates glycolysis in muscle.[21] β-Adrenergic receptor binding triggers glucagon secretion in the pancreas, increased adrenocorticotropic hormone (ACTH) secretion by the pituitary gland, and increased lipolysis by adipose tissue. Together, these effects lead to increased blood glucose and fatty acids, providing substrates for energy production within cells throughout the body.[21]
In addition to these metabolic changes, epinephrine also leads to broad alterations throughout all organ systems.
Physiologic responses to epinephrine by organ
Organ |
Effects |
Heart |
Increases heart rate |
Lungs |
Increases respiratory rate |
Nearly all tissues |
Vasoconstriction or vasodilation |
Liver |
Stimulates glycogenolysis |
N/A, systemic |
Triggers lipolysis |
N/A, systemic |
Muscle contraction |
Biosynthesis and regulation
Adrenaline is synthesized in the medulla of the adrenal gland in an enzymatic pathway that converts the amino acid tyrosine into a series of intermediates and, ultimately, adrenaline. Tyrosine is first oxidized to L-DOPA, which is subsequently decarboxylated to give dopamine. Oxidation gives norepinephrine, which is methylated to give epinephrine.
Adrenaline is synthesized via methylation of the primary distal amine of noradrenaline by phenylethanolamine N-methyltransferase (PNMT) in the cytosol of adrenergic neurons and cells of the adrenal medulla (so-called chromaffin cells). PNMT is found in the cytosol of only cells of adrenal medullary cells. PNMT uses S-adenosylmethionine (SAMe) as a cofactor to donate the methyl group to noradrenaline, creating adrenaline.[citation needed]
The biosynthesis of adrenaline involves a series of enzymatic reactions.
For noradrenaline to be acted upon by PNMT in the cytosol, it must first be shipped out of granules of the chromaffin cells. This may occur via the catecholamine-H+ exchanger VMAT1. VMAT1 is also responsible for transporting newly synthesized adrenaline from the cytosol back into chromaffin granules in preparation for release.[citation needed]
In liver cells, adrenaline binds to the β-adrenergic receptor, which changes conformation and helps Gs, a G protein, exchange GDP to GTP. This trimeric G protein dissociates to Gs alpha and Gs beta/gamma subunits. Gs alpha binds to adenyl cyclase, thus converting ATP into cyclic AMP. Cyclic AMP binds to the regulatory subunit of protein kinase A: Protein kinase A phosphorylates phosphorylase kinase. Meanwhile, Gs beta/gamma binds to the calcium channel and allows calcium ions to enter the cytoplasm. Calcium ions bind to calmodulin proteins, a protein present in all eukaryotic cells, which then binds to phosphorylase kinase and finishes its activation. Phosphorylase kinase phosphorylates glycogen phosphorylase, which then phosphorylates glycogen and converts it to glucose-6-phosphate.[citation needed]
Regulation
The major physiologic triggers of adrenaline release center upon stresses, such as physical threat, excitement, noise, bright lights, and high ambient temperature. All of these stimuli are processed in the central nervous system.[22]
Adrenocorticotropic hormone (ACTH) and the sympathetic nervous system stimulate the synthesis of adrenaline precursors by enhancing the activity of tyrosine hydroxylase and dopamine-β-hydroxylase, two key enzymes involved in catecholamine synthesis.[citation needed] ACTH also stimulates the adrenal cortex to release cortisol, which increases the expression of PNMT in chromaffin cells, enhancing adrenaline synthesis. This is most often done in response to stress.[citation needed] The sympathetic nervous system, acting via splanchnic nerves to the adrenal medulla, stimulates the release of adrenaline. Acetylcholine released by preganglionic sympathetic fibers of these nerves acts on nicotinic acetylcholine receptors, causing cell depolarization and an influx of calcium through voltage-gated calcium channels. Calcium triggers the exocytosis of chromaffin granules and, thus, the release of adrenaline (and noradrenaline) into the bloodstream.[citation needed]
Adrenaline (as with noradrenaline) does exert negative feedback to down-regulate its own synthesis at the presynaptic alpha-2 adrenergic receptor.[citation needed] Abnormally elevated levels of adrenaline can occur in a variety of conditions, such as surreptitious epinephrine administration, pheochromocytoma, and other tumors of the sympathetic ganglia.
Its action is terminated with reuptake into nerve terminal endings, some minute dilution, and metabolism by monoamine oxidase and catechol-O-methyl transferase.
Chemical synthesis
Epinephrine may be synthesized by the reaction of catechol (1) with chloroacetyl chloride (2), followed by the reaction with methylamine to give the ketone (4), which is reduced to the desired hydroxy compound (5). The racemic mixture may be separated using tartaric acid.
Synthetic route for adrenaline
For isolation from the adrenal glands tissue of livestock:
- J. Takamine, J. Soc. Chem. Ind., 20, 746 (1901).
- J. B. Aldrich, Am. J. Physiol., 5, 457 (1901).
Synthetic production:
- A. F. Stolz, Chem. Ber., 37, 4149 (1904).
- K. R. Payne, Ind. Chem. Chem. Manuf., 37, 523 (1961).
- H. Loewe, Arzneimittel-Forsch., 4, 583 (1954).
- Farbenwerke Meister Lucins & Bruning in Hochst a.M., DE 152814 (1903).
- Farbenwerke Meister Lucins & Bruning in Hochst a.M., DE 157300 (1903).
- Farbenwerke Meister Lucins & Bruning in Hochst a.M., DE 222451 (1908).
- Tullar, B. F. (1948). "The resolution of dl-arterenol". Journal of the American Chemical Society 70 (6): 2067. doi:10.1021/ja01186a024. PMID 18863798. edit
- D. Flacher, Z. Physiol. Chem., 58, 189 (1908).
Adrenaline junkie
"Adrenaline junkie" redirects here. For the British reality TV series, see Jack Osbourne: Adrenaline Junkie.
Adrenaline junkie is a term used to describe somebody appearing to be addicted to endogenous epinephrine. The "high" is caused by self-inducing a fight-or-flight response by intentionally engaging in stressful or risky behavior, which causes a release of epinephrine by the adrenal gland. The term adrenaline junkie was popularly used in the 1991 movie Point Break to describe individuals enjoying dangerous activities (such as extreme sports, e.g. BASE jumping) for the adrenaline "rush". Adrenaline junkies appear to favor stressful activities for the release of epinephrine as a stress response. Whether or not the positive response is caused specifically by epinephrine is difficult to determine, as endorphins are also released during the fight-or-flight response to such activities.[23][24]
Terminology
This chemical is widely referred to as "adrenaline" outside of the United States; however, its United States Adopted Name and International Nonproprietary Name is epinephrine. Epinephrine was chosen as the generic name in the United States because John Abel, who prepared extracts from the adrenal glands in 1897, used that name for his extracts.[25] In 1901, Jokichi Takamine patented a purified adrenal extract, and called it "adrenalin", which was trademarked by Parke, Davis & Co in the US.[25] In the belief that Abel's extract was the same as Takamine's, a belief since disputed, epinepherine became the generic name in the US.[25] The British Approved Name and European Pharmacopoeia term for this chemical is adrenaline and is indeed now one of the few differences between the INN and BAN systems of names.[26]
Among American health professionals and scientists, the term epinephrine is used over adrenaline. However, pharmaceuticals that mimic the effects of epinephrine are often called adrenergics, and receptors for epinephrine are called adrenergic receptors or adrenoceptors.
Notes
- ^ Berecek Kh, B. M.; Brody, M. J. (1982). "Evidence for a neurotransmitter role for epinephrine derived from the adrenal medulla". Am J Physiol 242 (4): H593–H601. PMID 6278965. edit
- ^ Cannon, W. B. (1929). American Journal of Physiology 89: 84–107. [Full citation needed]
- ^ von Bohlen und Halbach, O; Dermietzel, R (2006). Neurotransmitters and neuromodulators: handbook of receptors and biological effects. Wiley-VCH. p. 125. ISBN 978-3-527-31307-5. http://books.google.com/books?id=AfmA_KJMjJAC&pg=PA125.
- ^ "Polish Thread in the History of Circulatory Physiology". http://www.jpp.krakow.pl/journal/archive/04_06_s1/articles/01_article.html. Retrieved 2011-04-24.
- ^ Yamashima T (2003). "Jokichi Takamine (1854–1922), the samurai chemist, and his work on adrenalin". J Med Biogr 11 (2): 95–102. PMID 12717538.
- ^ a b Bennett M (1999). "One hundred years of adrenaline: the discovery of autoreceptors". Clin Auton Res 9 (3): 145–59. doi:10.1007/BF02281628. PMID 10454061.
- ^ Takamine J (1901). The isolation of the active principle of the suprarenal gland. Great Britain: Cambridge University Press. pp. xxix-xxx. http://books.google.com/?id=xVEq06Ym6qcC&pg=RA1-PR29#PRA1-PR29,M1.
- ^ a b "Epinephrine". The American Society of Health-System Pharmacists. http://www.drugs.com/monograph/epinephrine.html. Retrieved 3 April 2011.
- ^ Sicherer, Scott H. (2006). Understanding and Managing Your Child's Food Allergy. Baltimore: The Johns Hopkins University Press. ISBN 0801884918.
- ^ "Asthma Causes, Types, Symptoms, Treatment, Medication, Facts and the Link to Allergies by MedicineNet.com". http://www.medicinenet.com/asthma/page8.htm.
- ^ Bjornson CL, Johnson DW (2008). "Croup". The Lancet 371 (9609): 329–339. doi:10.1016/S0140-6736(08)60170-1. PMID 18295000.
- ^ a b Thomas LP, Friedland LR (1998). "The cost-effective use of nebulized racemic adrenaline in the treatment of croup". American Journal of Emergency Medicine 16 (1): 87–89. doi:10.1016/S0735-6757(98)90073-0. PMID 9451322.
- ^ a b Malhotra A, Krilov LR (2001). "Viral Croup". Pediatrics in Review 22 (1): 5–12. doi:10.1542/pir.22-1-5. PMID 11139641.
- ^ R. Rahn and B. Ball. Local Anesthesia in Dentistry, 3M ESPE AG, ESPE Platz, Seefeld, Germany, 2001, 44 pp.
- ^ About.com - "The Definition of Epinephrine"
- ^ a b Shen, Howard (2008). Illustrated Pharmacology Memory Cards: PharMnemonics. Minireview. pp. 4. ISBN 1-59541-101-1.
- ^ Sun, D; Huang, A; Mital, S; Kichuk, MR; Marboe, CC; Addonizio, LJ; Michler, RE; Koller, A et al (2002). "Norepinephrine elicits beta2-receptor-mediated dilation of isolated human coronary arterioles". Circulation 106 (5): 550–5. doi:10.1161/01.CIR.0000023896.70583.9F. PMID 12147535. edit
- ^ Stiell, I. G.; Hebert, P. C.; Weitzman, B. N.; Wells, G. A.; Raman, S.; Stark, R. M.; Higginson, L. A. J.; Ahuja, J. et al (1992). "High-Dose Epinephrine in Adult Cardiac Arrest". New England Journal of Medicine 327 (15): 1045. doi:10.1056/NEJM199210083271502. PMID 1522840. edit
- ^ Raymondos, K.; Panning, B.; Leuwer, M.; Brechelt, G.; Korte, T.; Niehaus, M.; Tebbenjohanns, J.; Piepenbrock, S. (2000). "Absorption and hemodynamic effects of airway administration of adrenaline in patients with severe cardiac disease". Ann. Intern. Med. 132 (10): 800–803. PMID 10819703.
- ^ Baselt, R. (2008). Disposition of Toxic Drugs and Chemicals in Man (8th ed.). Foster City, CA: Biomedical Publications. pp. 545–547. ISBN 0962652377.
- ^ a b Sabyasachi Sircar (2007). Medical Physiology. Thieme Publishing Group. pp. 536. ISBN 3-13-144061-9.
- ^ Nelson, L.; Cox, M. (2004). Lehninger Principles of Biochemstry (4th ed.). New York: Freeman. p. 908. ISBN 0716743396.
- ^ What Is An Adrenaline Junkie? What Can You Do If You Are One? by Elizabeth Scott, M.S. (updated: November 1, 2007) About.com Health's Disease and Condition content is reviewed by the Medical Review Board.
- ^ Fight-or-flight reaction - Explanations - Brain -ChangingMinds.org.
- ^ a b c Aronson, Jeffrey K (19). "“Where name and image meet”—the argument for “adrenaline”". British Medical Journal 320 (2733): 506–509. PMID PMC1127537. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1127537/?tool=pmcentrez. Retrieved 23 April 2012.
- ^ http://www.mhra.gov.uk/Howweregulate/Medicines/Namingofmedicines/ChangestomedicinesnamesBANstorINNs/index.htm
References
- Boron WF, Boulpaep EL (2005). Medical Physiology: A Cellular And Molecular Approach. Philadelphia, PA: Elsevier/Saunders. ISBN 1-4160-2328-3. OCLC 56191776.
- Voet D, Voet J (2004). Biochemistry (3rd ed.). USA: Wiley. ISBN 0-471-19350-x. OCLC 154657578.
External links
- U.S. National Library of Medicine: Drug Information Portal - Epinephrine
Phenethylamines
|
|
Phenethylamines |
Psychedelics: 2C-B • 2C-B-FLY • 2C-C • 2C-D • 2C-E • 2C-F • 2C-G • 2C-I • 2C-N • 2C-P • 2C-SE • 2C-T • 2C-T-2 • 2C-T-4 • 2C-T-7 • 2C-T-8 • 2C-T-9 • 2C-T-13 • 2C-T-15 • 2C-T-17 • 2C-T-21 • 2C-TFM • 2C-YN • Allylescaline • DESOXY • Escaline • Isoproscaline • Jimscaline • Macromerine • MEPEA • Mescaline • Metaescaline • Methallylescaline • Proscaline • Psi-2C-T-4 • TCB-2
Stimulants: 2-OH-PEA • β-Me-PEA • Hordenine • N-Me-PEA • Phenethylamine (PEA)
Entactogens: Lophophine • MDPEA • MDMPEA
Others: BOH • DMPEA
|
|
Amphetamines
Phenylisopropylamines |
Psychedelics: 3C-BZ • 3C-E • 3C-P • Aleph • Beatrice • Bromo-DragonFLY • D-Deprenyl • DMA • DMCPA • DMMDA • DOB • DOC • DOEF • DOET • DOI • DOM • DON • DOPR • DOTFM • Ganesha • MMDA • MMDA-2 • Psi-DOM • TMA • TeMA
Stimulants: 4-MA • 4-MMA • 4-MTA • 5-IT • Alfetamine • Amfecloral • Amfepentorex • Amphetamine (Dextroamphetamine, Levoamphetamine) • Amphetaminil • Benfluorex • Benzphetamine • Cathine • Clobenzorex • Dimethylamphetamine • Ephedrine (EPH) • Ethylamphetamine • Fencamfamine • Fencamine • Fenethylline • Fenfluramine (Dexfenfluramine) • Fenproporex • Fludorex • Furfenorex • Gepefrine • Hydroxyamphetamine • Iofetamine • Isopropylamphetamine • Lefetamine • Mefenorex • Metaraminol • Methamphetamine (Dextromethamphetamine, Levomethamphetamine) • Methoxyphenamine • MMA • Norfenfluramine • Oxilofrine • Ortetamine • PBA • PCA • Phenpromethamine • PFA • PFMA • PIA • PMA • PMEA • PMMA • Phenylpropanolamine (PPA) • Pholedrine • Prenylamine • Propylamphetamine • Pseudoephedrine (PSE) • Sibutramine • Tiflorex (Flutiorex) • Tranylcypromine • Xylopropamine • Zylofuramine
Entactogens: 5-APDB • 6-APB • 6-APDB • EDA • IAP • MDA • MDEA • MDHMA (FLEA) • MDMA ("Ecstasy") • MDOH • MMDMA • NAP • TAP
Others: Amiflamine • DFMDA • D-Deprenyl • L-Deprenyl (Selegiline)
|
|
Phentermines |
Stimulants: Chlorphentermine • Cloforex • Clortermine • Etolorex • Mephentermine • Pentorex (Phenpentermine) • Phentermine
Entactogens: MDPH • MDMPH
|
|
Cathinones |
Stimulants: Amfepramone • Brephedrone • Buphedrone • Bupropion (Amfebutamone) • Cathinone (Propion) • Dimethylcathinone (Dimethylpropion, Metamfepramone) • Ethcathinone (Ethylpropion) • Flephedrone • Methcathinone (Methylpropion) • Mephedrone • Methedrone
Entactogens: Ethylone • Methylone
|
|
Phenylisobutylamines |
Entactogens: 4-CAB • 4-MAB • Ariadne (α-Et-DOM) • BDB (J) • Butylone (bk-MBDB) • EBDB (Ethyl-J) • Eutylone (bk-EBDB) • MBDB (Methyl-J)
Stimulants: Phenylisobutylamine
|
|
Phenylalkylpyrrolidines |
Stimulants: α-PBP • α-PPP • α-PVP • MDPBP • MDPPP • MDPV • MOPPP • MPBP • MPHP • MPPP • Naphyrone • PEP • Prolintane • Pyrovalerone
|
|
Catecholamines
(and close relatives) |
6-FNE • 6-OHDA • α-Me-DA • α-Me-TRA • Adrenochrome • Ciladopa • D-DOPA (Dextrodopa) • Dimetofrine • Dopamine • Epinephrine (Adrenaline) • Epinine • Etilefrine • Ethylnorepinephrine • Fenclonine • Ibopamine • Isoprenaline (Isoproterenol) • Isoetarine • L-DOPA (Levodopa) • L-DOPS (Droxidopa) • L-Phenylalanine • L-Tyrosine • m-Tyramine • Metanephrine • Metaraminol • Metaterol • Metirosine • Methyldopa • Nordefrin (Levonordefrin) • Norepinephrine (Noradrenaline) • Norfenefrine (m-Octopamine) • Normetanephrine • Orciprenaline • p-Octopamine • p-Tyramine • Phenylephrine (Neosynephrine) • Synephrine (Oxedrine)
|
|
Miscellaneous |
Amidephrine • Arbutamine • Cafedrine • Denopamine • Dobutamine • Dopexamine • Etafedrine • Famprofazone • Methoxamine • Phenoxybenzamine • Prenalterol • Pronethalol • Propranolol • Salbutamol (Albuterol; Levosalbutamol) • Theodrenaline • UWA-101 • Xamoterol
|
|
Endocrine system: hormones (Peptide hormones · Steroid hormones)
|
|
Endocrine
glands |
Hypothalamic-
pituitary
|
Hypothalamus
|
GnRH · TRH · Dopamine · CRH · GHRH/Somatostatin · Melanin concentrating hormone
|
|
Posterior pituitary
|
Vasopressin · Oxytocin
|
|
Anterior pituitary
|
α (FSH FSHB, LH LHB, TSH TSHB, CGA) · Prolactin · POMC (CLIP, ACTH, MSH, Endorphins, Lipotropin) · GH
|
|
|
Adrenal axis
|
Adrenal cortex: aldosterone · cortisol · DHEA
Adrenal medulla: epinephrine · norepinephrine
|
|
Thyroid axis
|
Thyroid: thyroid hormone (T3 and T4) · calcitonin
Parathyroid: PTH
|
|
Gonadal axis
|
Testis: testosterone · AMH · inhibin
Ovary: estradiol · progesterone · activin and inhibin · relaxin (pregnancy)
Placenta: hCG · HPL · estrogen · progesterone
|
|
Islet-Acinar
Axis
|
Pancreas: glucagon · insulin · amylin · somatostatin · pancreatic polypeptide
|
|
Pineal gland
|
Pineal gland: melatonin
|
|
|
Non-end.
glands |
Thymus: Thymosin (Thymosin α1, Thymosin beta) · Thymopoietin · Thymulin
Digestive system: Stomach: gastrin · ghrelin · Duodenum: CCK · Incretins (GIP, GLP-1) · secretin · motilin · VIP · Ileum: enteroglucagon · peptide YY · Liver/other: Insulin-like growth factor (IGF-1, IGF-2)
Adipose tissue: leptin · adiponectin · resistin
Skeleton: Osteocalcin
Kidney: JGA (renin) · peritubular cells (EPO) · calcitriol · prostaglandin
Heart: Natriuretic peptide (ANP, BNP)
|
|
|
|
noco(d)/cong/tumr, sysi/epon
|
proc, drug (A10/H1/H2/H3/H5)
|
|
|
|
Cardiac stimulants excluding cardiac glycosides (C01C)
|
|
Adrenergic and
dopaminergic agents |
Adrenergic agonists
|
α
|
Metaraminol • Phenylephrine • Methoxamine • Norfenefrine • Oxedrine • Midodrine • Mephentermine
|
|
β
|
Dobutamine • Arbutamine • Isoprenaline • Prenalterol
|
|
mixed
|
Amezinium metilsulfate • Epinephrine # • Norepinephrine • Etilefrine
|
|
|
Dopamine agonists
|
Fenoldopam
|
|
Both
|
Dopamine # • Dopexamine • Ibopamine • Octopamine
|
|
Unknown/ungrouped
|
Dimetofrine • Gepefrine • Cafedrine • Theodrenaline
|
|
|
Phosphodiesterase inhibitors (PDE3I) |
Amrinone • Milrinone • Enoximone • Bucladesine
|
|
Other cardiac stimulants |
Angiotensinamide • Xamoterol • Levosimendan
|
|
- #WHO-EM
- ‡Withdrawn from market
- Clinical trials:
- †Phase III
- §Never to phase III
|
|
noco/cong/tumr, sysi/epon, injr
|
proc, drug (C1A/1B/1C/1D), blte
|
|
|
|
Drugs for obstructive airway diseases: asthma/COPD (R03)
|
|
Adrenergics, inhalants |
Short acting β2-agonists
|
Salbutamol#/Levosalbutamol • Fenoterol • Terbutaline • Pirbuterol • Procaterol • Bitolterol • Rimiterol • Carbuterol • Tulobuterol • Reproterol
|
|
Long acting β2-agonists (LABA)
|
Arformoterol • Bambuterol • Clenbuterol • Formoterol • Salmeterol Ultra LABA: Indacaterol
|
|
other
|
Epinephrine# • Hexoprenaline • Isoprenaline (Isoproterenol) • Orciprenaline (Metaproterenol)
|
|
|
Glucocorticoids |
Beclometasone# • Budesonide • Ciclesonide • Fluticasone • Mometasone • Flunisolide • Betamethasone • Triamcinolone
|
|
Anticholinergics/
muscarinic antagonist |
Ipratropium bromide# • Oxitropium bromide • Tiotropium bromide
|
|
Mast cell stabilizers |
Cromoglicate • Nedocromil
|
|
Xanthines |
Doxofylline • Enprofylline • Theobromine • Theophylline/Aminophylline/Choline theophyllinate
|
|
Eicosanoid inhibition |
Leukotriene antagonists
|
Montelukast • Pranlukast • Zafirlukast
|
|
Lipoxygenase inhibitor
|
Zileuton
|
|
Thromboxane receptor antagonists
|
Ramatroban • Seratrodast
|
|
|
Combination products |
Budesonide/formoterol • Fluticasone/salmeterol • Ipratropium bromide/salbutamol • Mometasone/formoterol
|
|
- #WHO-EM
- ‡Withdrawn from market
- Clinical trials:
- †Phase III
- §Never to phase III
|
anat(n, x, l, c)/phys/devp
|
noco(c, p)/cong/tumr, sysi/epon, injr
|
|
|
|
|
Antihemorrhagics (B02)
|
|
Hemostatics
(coagulation) |
Systemic
|
Vitamin K
|
- Phytomenadione (K1)
- Menadione (K3)
|
|
Coagulation factors
|
- intrinsic: IX/Nonacog alfa
- VIII
- extrinsic: VII/Eptacog alfa
- common: X
- II/Thrombin
- I/Fibrinogen
|
|
Other systemic
|
- Etamsylate
- Carbazochrome
- Batroxobin
- thrombopoietin receptor agonist (Romiplostim
- Eltrombopag)
|
|
|
Local
|
- Absorbable gelatin sponge
- Oxidized cellulose
- Tetragalacturonic acid hydroxymethylester
- Thrombin
- Collagen
- Calcium alginate
- Epinephrine/Adrenalone
|
|
|
Antifibrinolytics |
- amino acids (Aminocaproic acid
- Tranexamic acid
- Aminomethylbenzoic acid)
serpins (Aprotinin
- Alfa1 antitrypsin
- C1-inhibitor
- Camostat)
|
|
|
cell/phys (coag, heme, immu, gran), csfs
|
rbmg/mogr/tumr/hist, sysi/epon, btst
|
drug (B1/2/3+5+6), btst, trns
|
|
|
|
Health science > Medicine > Emergency medicine
|
|
Procedures |
- Acute Care of at-Risk Newborns (ACoRN)
- Advanced cardiac life support (ACLS)
- Advanced Trauma Life Support (ATLS)
- Cardiopulmonary resuscitation (CPR)
- First aid
- Neonatal Resuscitation Program (NRP)
- Pediatric Advanced Life Support (PALS)
- Basic Life Support
|
|
Equipment |
- Bag valve mask (BVM)
- Chest tube
- Defibrillation (AED
- ICD)
- Electrocardiogram (ECG/EKG)
- Intraosseous infusion (IO)
- Intravenous therapy (IV)
- Tracheal intubation
- Nasopharyngeal airway (NPA)
- Oropharyngeal airway (OPA)
- Pocket mask
|
|
Drugs |
- Atropine
- Amiodarone
- Epinephrine/Adrenaline
- Magnesium Sulfate
- Sodium Bicarbonate
- Naloxone
|
|
Other |
- Golden hour
- Emergency department
- Emergency medical services
- Emergency nursing
- Emergency physician
- Emergency psychiatry
- Medical emergency
- Trauma center
- Triage
- NACA score
|
|
- Book:Emergency medicine
- Category:Emergency medicine
- Portal:Medicine
|
|
Adrenergics
|
|
Receptor ligands
|
|
α1
|
- Agonists: 5-FNE
- 6-FNE
- Amidephrine
- Anisodamine
- Anisodine
- Cirazoline
- Dipivefrine
- Dopamine
- Ephedrine
- Epinephrine (Adrenaline)
- Etilefrine
- Ethylnorepinephrine
- Indanidine
- Levonordefrin
- Metaraminol
- Methoxamine
- Methyldopa
- Midodrine
- Naphazoline
- Norepinephrine (Noradrenaline)
- Octopamine
- Oxymetazoline
- Phenylephrine
- Phenylpropanolamine
- Pseudoephedrine
- Synephrine
- Tetrahydrozoline
Antagonists: Abanoquil
- Adimolol
- Ajmalicine
- Alfuzosin
- Amosulalol
- Arotinolol
- Atiprosin
- Benoxathian
- Buflomedil
- Bunazosin
- Carvedilol
- CI-926
- Corynanthine
- Dapiprazole
- DL-017
- Domesticine
- Doxazosin
- Eugenodilol
- Fenspiride
- GYKI-12,743
- GYKI-16,084
- Indoramin
- Ketanserin
- L-765,314
- Labetalol
- Mephendioxan
- Metazosin
- Monatepil
- Moxisylyte (Thymoxamine)
- Naftopidil
- Nantenine
- Neldazosin
- Nicergoline
- Niguldipine
- Pelanserin
- Phendioxan
- Phenoxybenzamine
- Phentolamine
- Piperoxan
- Prazosin
- Quinazosin
- Ritanserin
- RS-97,078
- SGB-1,534
- Silodosin
- SL-89.0591
- Spiperone
- Talipexole
- Tamsulosin
- Terazosin
- Tibalosin
- Tiodazosin
- Tipentosin
- Tolazoline
- Trimazosin
- Upidosin
- Urapidil
- Zolertine
* Note that many TCAs, TeCAs, antipsychotics, ergolines, and some piperazines like buspirone, trazodone, nefazodone, etoperidone, and mepiprazole all antagonize α1-adrenergic receptors as well, which contributes to their side effects such as orthostatic hypotension.
|
|
α2
|
- Agonists: (R)-3-Nitrobiphenyline
- 4-NEMD
- 6-FNE
- Amitraz
- Apraclonidine
- Brimonidine
- Cannabivarin
- Clonidine
- Detomidine
- Dexmedetomidine
- Dihydroergotamine
- Dipivefrine
- Dopamine
- Ephedrine
- Ergotamine
- Epinephrine (Adrenaline)
- Esproquin
- Etilefrine
- Ethylnorepinephrine
- Guanabenz
- Guanfacine
- Guanoxabenz
- Levonordefrin
- Lofexidine
- Medetomidine
- Methyldopa
- Mivazerol
- Naphazoline
- Norepinephrine (Noradrenaline)
- Phenylpropanolamine
- Piperoxan
- Pseudoephedrine
- Rilmenidine
- Romifidine
- Talipexole
- Tetrahydrozoline
- Tizanidine
- Tolonidine
- Urapidil
- Xylazine
- Xylometazoline
Antagonists: 1-PP
- Adimolol
- Aptazapine
- Atipamezole
- BRL-44408
- Buflomedil
- Cirazoline
- Efaroxan
- Esmirtazapine
- Fenmetozole
- Fluparoxan
- GYKI-12,743
- GYKI-16,084
- Idazoxan
- Mianserin
- Mirtazapine
- MK-912
- NAN-190
- Olanzapine
- Phentolamine
- Phenoxybenzamine
- Piperoxan
- Piribedil
- Rauwolscine
- Rotigotine
- SB-269,970
- Setiptiline
- Spiroxatrine
- Sunepitron
- Tolazoline
- Yohimbine
* Note that many atypical antipsychotics and azapirones like buspirone and gepirone (via metabolite 1-PP) antagonize α2-adrenergic receptors as well.
|
|
β
|
|
|
|
|
Reuptake inhibitors
|
|
NET
|
- Selective norepinephrine reuptake inhibitors: Amedalin
- Atomoxetine (Tomoxetine)
- Ciclazindol
- Daledalin
- Edivoxetine
- Esreboxetine
- Lortalamine
- Mazindol
- Nisoxetine
- Reboxetine
- Talopram
- Talsupram
- Tandamine
- Viloxazine; Norepinephrine-dopamine reuptake inhibitors: Amineptine
- Bupropion (Amfebutamone)
- Fencamine
- Fencamfamine
- Lefetamine
- Levophacetoperane
- LR-5182
- Manifaxine
- Methylphenidate
- Nomifensine
- O-2172
- Radafaxine; Serotonin-norepinephrine reuptake inhibitors: Bicifadine
- Desvenlafaxine
- Duloxetine
- Eclanamine
- Levomilnacipran
- Milnacipran
- Sibutramine
- Venlafaxine; Serotonin-norepinephrine-dopamine reuptake inhibitors: Brasofensine
- Diclofensine
- DOV-102,677
- DOV-21,947
- DOV-216,303
- JNJ-7925476
- JZ-IV-10
- Methylnaphthidate
- Naphyrone
- NS-2359
- PRC200-SS
- SEP-225,289
- SEP-227,162
- Tesofensine; Tricyclic antidepressants: Amitriptyline
- Butriptyline
- Cianopramine
- Clomipramine
- Desipramine
- Dosulepin
- Doxepin
- Imipramine
- Lofepramine
- melitracen
- Nortriptyline
- Protriptyline
- Trimipramine; Tetracyclic antidepressants: Amoxapine
- Maprotiline
- Mianserin
- Oxaprotiline
- Setiptiline; Others: Cocaine
- CP-39,332
- EXP-561
- Fezolamine
- Ginkgo biloba
- Indeloxazine
- Nefazodone
- Nefopam
- Pridefrine
- Tapentadol
- Tedatioxetine
- Teniloxazine
- Tramadol
- Ziprasidone
|
|
VMAT
|
- Ibogaine
- Reserpine
- Tetrabenazine
|
|
|
|
|
|
Enzyme inhibitors
|
|
Anabolism
|
PAH
|
|
|
TH
|
- 3-Iodotyrosine
- Aquayamycin
- Bulbocapnine
- Metirosine
- Oudenone
|
|
AAAD
|
- Benserazide
- Carbidopa
- DFMD
- Genistein
- Methyldopa
|
|
DBH
|
- Bupicomide
- Disulfiram
- Dopastin
- Fusaric acid
- Nepicastat
- Phenopicolinic acid
- Tropolone
|
|
PNMT
|
- CGS-19281A
- SKF-64139
- SKF-7698
|
|
|
Catabolism
|
MAO
|
- Nonselective: Benmoxin
- Caroxazone
- Echinopsidine
- Furazolidone
- Hydralazine
- Indantadol
- Iproclozide
- Iproniazid
- Isocarboxazid
- Isoniazid
- Linezolid
- Mebanazine
- Metfendrazine
- Nialamide
- Octamoxin
- Paraxazone
- Phenelzine
- Pheniprazine
- Phenoxypropazine
- Pivalylbenzhydrazine
- Procarbazine
- Safrazine
- Tranylcypromine; MAO-A selective: Amiflamine
- Bazinaprine
- Befloxatone
- Befol
- Brofaromine
- Cimoxatone
- Clorgiline
- Esuprone
- Harmala alkaloids (Harmine
- Harmaline
- Tetrahydroharmine
- Harman
- Norharman, etc)
- Methylene Blue
- Metralindole
- Minaprine
- Moclobemide
- Pirlindole
- Sercloremine
- Tetrindole
- Toloxatone
- Tyrima; MAO-B selective: D-Deprenyl
- Selegiline (L-Deprenyl)
- Ladostigil
- Lazabemide
- Milacemide
- Mofegiline
- Pargyline
- Rasagiline
- Safinamide
* Note that MAO-B inhibitors also influence norepinephrine/epinephrine levels since they inhibit the breakdown of their precursor dopamine.
|
|
COMT
|
|
|
|
|
|
Others
|
|
Precursors
|
- L-Phenylalanine → L-Tyrosine → L-DOPA (Levodopa) → Dopamine
- L-DOPS (Droxidopa)
|
|
Cofactors
|
- Ferrous Iron (Fe2+)
- S-Adenosyl-L-Methionine
- Vitamin B3 (Niacin
- Nicotinamide → NADPH)
- Vitamin B6 (Pyridoxine
- Pyridoxamine
- Pyridoxal → Pyridoxal Phosphate)
- Vitamin B9 (Folic acid → Tetrahydrofolic acid)
- Vitamin C (Ascorbic acid)
- Zinc (Zn2+)
|
|
Others
|
- Activity enhancers: BPAP
- PPAP; Release blockers: Bethanidine
- Bretylium
- Guanadrel
- Guanazodine
- Guanclofine
- Guanethidine
- Guanoxan; Toxins: Oxidopamine (6-Hydroxydopamine)
|
|
|
|
List of adrenergic drugs
|
|
Neurotransmitters
|
|
Amino acids |
Alanine · Aspartate · Cycloserine · DMG · GABA · Glutamate · Glycine · Hypotaurine · Kynurenic acid (Transtorine) · NAAG (Spaglumic acid) · NMG (Sarcosine) · Serine · Taurine · TMG (Betaine)
|
|
Endocannabinoids |
2-AG · 2-AGE (Noladin ether) · AEA (Anandamide) · NADA · OAE (Virodhamine) · Oleamide · PEA (Palmitoylethanolamide) · RVD-Hpα · Hp (Hemopressin)
|
|
Gasotransmitters |
Carbon monoxide · Hydrogen sulfide · Nitric oxide · Nitrous oxide
|
|
Monoamines |
Dopamine · Epinephrine (Adrenaline) · Melatonin · NAS (Normelatonin) · Norepinephrine (Noradrenaline) · Serotonin (5-HT)
|
|
Purines |
Adenosine · ADP · AMP · ATP
|
|
Trace amines |
3-ITA · 5-MeO-DMT · Bufotenin · DMT · m-Octopamine · p-Octopamine · m-Tyramine · p-Tyramine · NMT · Phenethylamine · Synephrine · Thyronamine · Tryptamine
|
|
Others |
1,4-BD · Acetylcholine · GBL · GHB · Histamine
|
|
See also Template:Neuropeptides
|
|
|
anat(h/r/t/c/b/l/s/a)/phys(r)/devp/prot/nttr/nttm/ntrp
|
noco/auto/cong/tumr, sysi/epon, injr
|
|
|
|
|