ABO HDN ICD10 = P55.1 |
Classification and external resources |
ICD-9-CM |
773.1 |
MedlinePlus |
001298 001306 |
[edit on Wikidata]
|
In ABO hemolytic disease of the newborn (also known as ABO HDN) maternal IgG antibodies with specificity for the ABO blood group system pass through the placenta to the fetal circulation where they can cause hemolysis of fetal red blood cells which can lead to fetal anemia and HDN. In contrast to Rh disease, about half of the cases of ABO HDN occur in a firstborn baby and ABO HDN does not become more severe after further pregnancies.
The ABO blood group system is the best known surface antigen system, expressed on a wide variety of human cells. For Caucasian populations about one fifth of all pregnancies have ABO incompatibility between the fetus and the mother, but only a very small minority develop symptomatic ABO HDN.[1] The latter typically only occurs in mothers of blood group O, because they can produce enough IgG antibodies to cause hemolysis.
Although very uncommon, cases of ABO HDN have been reported in infants born to mothers with blood groups A[2][3] and B.[4]
Contents
- 1 Causes
- 2 Moderating factors
- 3 Diagnosis
- 4 Treatment
- 5 Complications
- 6 See also
- 7 References
- 8 External links
Causes
Anti-A and anti-B antibodies are usually IgM and do not pass through the placenta, but some mothers "naturally" have IgG anti-A or IgG anti-B antibodies, which can pass through the placenta. Exposure to A-antigens and B-antigens, which are both widespread in nature, usually leads to the production of IgM anti-A and IgM anti-B antibodies but occasionally IgG antibodies are produced.
- Fetal-maternal transfusion
Some mothers may be sensitized by fetal-maternal transfusion of ABO incompatible red blood and produce immune IgG antibodies against the antigen they do not have and their baby does. For example, when a mother of genotype OO (blood group O) carries a fetus of genotype AO (blood group A) she may produce IgG anti-A antibodies. The father will either have blood group A, with genotype AA or AO, or more rarely, have blood group AB, with genotype AB.
It would be very rare for ABO sensitization to be caused by therapeutic blood transfusion as a great deal of effort and checking is done to ensure that blood is ABO compatible between the recipient and the donor.
Moderating factors
In about a third of all ABO incompatible pregnancies maternal IgG anti-A or IgG anti-B antibodies pass through the placenta to the fetal circulation leading to a weakly positive direct Coombs test for the neonate's blood. However, ABO HDN is generally mild and short-lived and only occasionally severe because:
- IgG anti-A (or IgG anti-B) antibodies that enter the fetal circulation from the mother find A (or B) antigens on many different fetal cell types, leaving fewer antibodies available for binding onto fetal red blood cells.[5]
- Fetal RBC surface A and B antigens are not fully developed during gestation and so there are a smaller number of antigenic sites on fetal RBCs.[5]
Diagnosis
Routine antenatal antibody screening blood tests (indirect Coombs test) do not screen for ABO HDN.[citation needed] If IgG anti-A or IgG anti-B antibodies are found in the pregnant woman's blood, they are not reported with the test results, because they do not correlate well with ABO HDN.[citation needed] Diagnosis is usually made by investigation of a newborn baby who has developed jaundice during the first week of life.
Testing
- Coombs - after birth baby will have a direct coombs test run to confirm antibodies attached to the infant’s red blood cells. This test is run from cord blood.[6] In some cases, the direct coombs will be negative but severe, even fatal HDN can occur.[7] An indirect coombs needs to be run in cases of anti-C,[8] anti-c,[8] and anti-M. Anti-M also recommends antigen testing to rule out the presence of HDN.[9]
- Hgb - the infant’s hemoglobin should be tested from cord blood.[6]
- Reticulocyte count - Reticulocytes are elevated when the infant is producing more blood to combat anemia.[6] A rise in the retic count can mean that an infant may not need additional transfusions.[10] Low retic is observed in infants treated with IUT and in those with HDN from anti-Kell[8]
- Neutrophils - as Neutropenia is one of the complications of HDN, the neutrophil count should be checked.[11][12]
- Thrombocytes - as thrombocytopenia is one of the complications of HDN, the thrombocyte count should be checked.[11]
- Bilirubin should be tested from cord blood.[6]
- Ferritin - because most infants affected by HDN have iron overload, a ferritin must be run before giving the infant any additional iron.[13]
- Newborn Screening Tests - Transfusion with donor blood during pregnancy or shortly after birth can affect the results of the Newborn Screening Tests. It is recommended to wait and retest 10–12 months after last transfusion. In some cases, DNA testing from saliva can be used to rule out certain conditions.[citation needed]
Treatment
The antibodies in ABO HDN cause anemia due to destruction of fetal red blood cells and jaundice due to the rise in blood levels of bilirubin a by-product of hemoglobin break down. If the anemia is severe, it can be treated with a blood transfusion, however this is rarely needed. On the other hand, neonates have underdeveloped livers that are unable to process large amounts of bilirubin and a poorly developed blood-brain barrier that is unable to block bilirubin from entering the brain.This can result in kernicterus if left unchecked. If the bilirubin level is sufficiently high as to cause worry, it can be lowered via phototherapy in the first instance or an exchange transfusion if severely elevated.
- Phototherapy - Phototherapy is used for cord bilirubin of 3 or higher. Some doctors use it at lower levels while awaiting lab results.[14]
- IVIG - IVIG has been used to successfully treat many cases of HDN. It has been used not only on anti-D, but on anti-E as well.[15] IVIG can be used to reduce the need for exchange transfusion and to shorten the length of phototherapy.[16] The AAP recommends "In isoimmune hemolytic disease, administration of intravenousγ-globulin (0.5-1 g/kg over 2 hours) is recommended if the TSB is rising despite intensive phototherapy or the TSB level is within 2 to 3 mg/dL (34-51 μmol/L) of the exchange level . If necessary, this dose can be repeated in 12 hours (evidence quality B: benefits exceed harms). Intravenous γ-globulin has been shown to reduce the need for exchange transfusions in Rh and ABO hemolytic disease."[14]
- Exchange transfusion - Exchange transfusion is used when bilirubin reaches either the high or medium risk lines on the nonogram provided by the American Academy of Pediatrics (Figure 4).[14] Cord bilirubin >4 is also indicative of the need for exchange transfusion.[17]
Complications
- High at birth or rapidly rising bilirubin[6]
- Prolonged hyperbilirubinemia[6]
- Bilirubin Induced Neuorlogical Dysfunction[18]
- Cerebral Palsy[19]
- Kernicterus[20]
- Neutropenia[11][12]
- Thrombocytopenia[11]
- Hemolytic Anemia - MUST NOT be treated with iron[13]
- Late onset anemia - Must NOT be treated with iron. Can persist up to 12 weeks after birth.[21][22][23]
See also
- Coombs test
- Hemolytic anemia
- Hematology
References
- ^ http://www.obgyn.net/english/pubs/features/presentations/panda13/ABO-Rh.ppt[full citation needed]
- ^ Wang, Michael; Hays, Taru; Ambruso, Dan R.; Silliman, Christopher C.; Dickey, William C. (2005). "Hemolytic disease of the newborn caused by a high titer anti-group B IgG from a group a mother". Pediatric Blood & Cancer. 45 (6): 861–2. PMID 16007582. doi:10.1002/pbc.20503.
- ^ Jeon, H; Calhoun, B; Pothiawala, M; Herschel, M; Baron, B. W. (2000). "Significant ABO hemolytic disease of the newborn in a group B infant with a group A2 mother". Immunohematology. 16 (3): 105–8. PMID 15373613.
- ^ Haque, K. M.; Rahman, M (2000). "An unusual case of ABO-haemolytic disease of the newborn". Bangladesh Medical Research Council Bulletin. 26 (2): 61–4. PMID 11508073.
- ^ a b Bethesda DL (2005). "Hemolytic disease of the newborn". Blood Groups and Red Cell Antigens. National Center for Biotechnology Information.
- ^ a b c d e f Murray, N. A; Roberts, I. A G (2007). "Haemolytic disease of the newborn". Archives of Disease in Childhood - Fetal and Neonatal Edition. 92 (2): F83–8. PMC 2675453 . PMID 17337672. doi:10.1136/adc.2005.076794.
- ^ Heddle, N. M.; Wentworth, P.; Anderson, D. R.; Emmerson, D.; Kelton, J. G.; Blajchman, M. A. (1995). "Three examples of Rh haemolytic disease of the newborn with a negative direct antiglobulin test". Transfusion Medicine. 5 (2): 113–6. PMID 7655573. doi:10.1111/j.1365-3148.1995.tb00197.x.
- ^ a b c Hemolytic Disease of Newborn~workup at eMedicine
- ^ Arora, Satyam; Doda, Veena; Maria, Arti; Kotwal, Urvershi; Goyal, Saurabh (2015). "Maternal anti-M induced hemolytic disease of newborn followed by prolonged anemia in newborn twins". Asian Journal of Transfusion Science. 9 (1): 98–101. PMC 4339947 . PMID 25722586. doi:10.4103/0973-6247.150968.
- ^ https://www.ucsfbenioffchildrens.org/pdf/manuals/42_Hemol.pdf[full citation needed]
- ^ a b c d Koenig, J. M.; Christensen, R. D. (1989). "Neutropenia and thrombocytopenia in infants with Rh hemolytic disease". The Journal of pediatrics. 114 (4 Pt 1): 625–31. PMID 2494315.
- ^ a b Lalezari, P; Nussbaum, M; Gelman, S; Spaet, T. H. (1960). "Neonatal neutropenia due to maternal isoimmunization". Blood. 15: 236–43. PMID 14413526.
- ^ a b Rath, M. E. A.; Smits-Wintjens, V. E. H. J.; Oepkes, D.; Walther, F. J.; Lopriore, E. (2013). "Iron status in infants with alloimmune haemolytic disease in the first three months of life". Vox Sanguinis. 105 (4): 328–33. PMID 23802744. doi:10.1111/vox.12061.
- ^ a b c American Academy of Pediatrics Subcommittee on Hyperbilirubinemia. (2004). "Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation". Pediatrics. 114 (1): 297–316. PMID 15231951.
- ^ Onesimo, Roberta; Rizzo, Daniela; Ruggiero, Antonio; Valentini, Piero (2010). "Intravenous Immunoglobulin therapy for anti-E hemolytic disease in the newborn". The Journal of Maternal-Fetal & Neonatal Medicine. 23 (9): 1059–61. PMID 20092394. doi:10.3109/14767050903544751.
- ^ Gottstein, R (2003). "Systematic review of intravenous immunoglobulin in haemolytic disease of the newborn". Archives of Disease in Childhood - Fetal and Neonatal Edition. 88 (1): F6–10. PMC 1755998 . PMID 12496219. doi:10.1136/fn.88.1.F6.
- ^ Hemolytic Disease of Newborn~followup at eMedicine
- ^ Shapiro, Steven M (2004). "Definition of the Clinical Spectrum of Kernicterus and Bilirubin-Induced Neurologic Dysfunction (BIND)". Journal of Perinatology. 25 (1): 54–9. PMID 15578034. doi:10.1038/sj.jp.7211157.
- ^ Blair, Eve; Watson, Linda (2006). "Epidemiology of cerebral palsy". Seminars in Fetal and Neonatal Medicine. 11 (2): 117–25. PMID 16338186. doi:10.1016/j.siny.2005.10.010.
- ^ Lande, Lottie (1948). "Clinical signs and development of survivors of kernicterus due to Rh sensitization". The Journal of Pediatrics. 32 (6): 693–705. PMID 18866937. doi:10.1016/S0022-3476(48)80225-8.
- ^ Mitchell, S; James, A (1999). "Severe late anemia of hemolytic disease of the newborn". Paediatrics & child health. 4 (3): 201–3. PMC 2828194 . PMID 20212966.
- ^ Al-Alaiyan, S.; Al Omran, A. (1999). "Late hyporegenerative anemia in neonates with rhesus hemolytic disease". Journal of Perinatal Medicine. 27 (2). doi:10.1515/JPM.1999.014.
- ^ Jadala, Hareesh; V., Pooja; K., Raghavendra; M., Prithvish; B., Srinivas (2016). "Late onset severe anemia due to rhesus isoimmunization". International Journal of Contemporary Pediatrics: 1472–3. doi:10.18203/2349-3291.ijcp20163704.
External links
- Introduction to Antibodies in Pregnancy
Certain conditions originating in the perinatal period / fetal disease (P, 760–779)
|
Maternal factors and
complications of pregnancy,
labour and delivery |
placenta: |
- Placenta praevia
- Placental insufficiency
- Twin-to-twin transfusion syndrome
|
chorion/amnion: |
|
umbilical cord: |
- Umbilical cord prolapse
- Nuchal cord
- Single umbilical artery
|
|
Length of gestation
and fetal growth |
- Small for gestational age/Large for gestational age
- Preterm birth/Postmature birth
- Intrauterine growth restriction
|
Birth trauma |
- scalp
- Cephalhematoma
- Chignon
- Caput succedaneum
- Subgaleal hemorrhage
- Brachial plexus lesion
- Erb's palsy
- Klumpke paralysis
|
By system |
Respiratory |
- Intrauterine hypoxia
- Infant respiratory distress syndrome
- Transient tachypnea of the newborn
- Meconium aspiration syndrome
- pleural disease
- Pneumothorax
- Pneumomediastinum
- Wilson–Mikity syndrome
- Bronchopulmonary dysplasia
|
Cardiovascular |
- Pneumopericardium
- Persistent fetal circulation
|
Haemorrhagic and
hematologic disease |
- Vitamin K deficiency
- Haemorrhagic disease of the newborn
- HDN
- ABO
- Anti-Kell
- Rh c
- Rh D
- Rh E
- Hydrops fetalis
- Hyperbilirubinemia
- Kernicterus
- Neonatal jaundice
- Velamentous cord insertion
- Intraventricular hemorrhage
- Germinal matrix hemorrhage
- Anemia of prematurity
|
Digestive |
- Ileus
- Necrotizing enterocolitis
- Meconium peritonitis
|
Integument and
thermoregulation |
- Erythema toxicum
- Sclerema neonatorum
|
Nervous system |
- Periventricular leukomalacia
|
Musculoskeletal |
- Gray baby syndrome
- muscle tone
- Congenital hypertonia
- Congenital hypotonia
|
|
Infectious |
- Vertically transmitted infection
- Neonatal infection
- Congenital rubella syndrome
- Neonatal herpes simplex
- Mycoplasma hominis infection
- Ureaplasma urealyticum infection
- Omphalitis
- Neonatal sepsis
- Group B streptococcal infection
- Neonatal conjunctivitis
|
Other |
- Miscarriage
- Perinatal mortality
- Stillbirth
- Infant mortality
- Neonatal withdrawal
|