原子力 |
|
ポータル |
原子
原子物理学 |
原子力
核兵器 |
核変換(かくへんかん、英: nuclear transmutation)とは、原子核が放射性崩壊や人工的な核反応によって他の種類の原子核に変わることを言う[1]。元素変換(英: transmutation of elements)、原子核変換とも呼ばれる。
使用済み核燃料に含まれる半減期が極めて長い核種を、短寿命の核種に変える群分離・核変換技術により、環境負荷を低減する研究開発が進められている。
目次
- 1 概要
- 2 歴史
- 3 核変換技術(消滅処理)
- 4 日本における施策
- 5 脚注
- 6 参考文献
- 7 関連項目
- 8 外部リンク
概要
化学において、化学結合で結ばれた原子群である分子は基本的な要素の一つであるが、化学反応によってその分子の構成は比較的容易に変化する。一方、その分子の構成要素である原子(の原子核)もまた核力で結ばれた陽子と中性子の群でしかないため、分子同様、原子もその構成(核種[2])は、分子ほど容易ではないものの[3]、変化することがある。この原子の原子核の構成の変化(核種の変化)を核変換(nuclear transmutation)と呼ぶ。
原子核物理学において基本的な現象である放射性核種が放射線を放出して別の核種へと変わる放射性崩壊は核変換の一種であるが、純粋に人工的な核変換は、1932年のコッククロフトとウォルトンによる、加速器を用いた核種の変換の成功に始まる[4]。なお、核分裂反応、核融合反応も核変換の一種である。
核変換によって生成される代表的な物質としてはプルトニウム239がある[5]。
なお、元来、原子を構成する核種の半減期は環境変化の影響を極めて受け難い物理量であり、古典物理学的・化学的な手法では半減期を変化させる(その核種を核変換させる)ことはできないと考えられていたが、近年になって、極端な状態においてようやく1%程度というものであるが、高圧、電磁場あるいは化学構造などによって、半減期が変化する(核変換が発生する)ということが明らかとなっている[6][7]。
原子炉の使用済み核燃料からなる高レベル放射性廃棄物は様々な核種を含んでいるが、その一部は、天然ウランレベルの放射能まで減衰するのには数万年のオーダーの時間がかかる超長寿命の核種である。プルサーマルや核燃料サイクルを経て出てくる放射性廃棄物から、超長寿命核種であるマイナーアクチノイド(MA)[8][9]や核分裂生成物(FP)を群分離した上で、数百年単位の短寿命核種または安定核種に核変換する技術(核変換技術、かつては消滅処理)の研究開発が1970年代から[10]進められている。
歴史
1901年、フレデリック・ソディはトリウムがラジウムへと自然に放射性崩壊(アルファ崩壊)することを発見した。彼はすぐさまこの発見を同僚のアーネスト・ラザフォードに報告した[11]。
1919年、ラザフォードは窒素にアルファ粒子を照射することによって酸素に核変換(14N + α → 17O + p. )することに成功した。これは核反応(ある物質の放射性崩壊により放出された粒子が他の原子核を変換する反応)を観測した世界初の出来事であった。
1932年には、ついに完全に人工的な核反応かつ核変換がラザフォードの同僚であるジョン・コッククロフトとアーネスト・ウォルトンによって達成された。彼らは陽子を人工的に加速し、リチウム7へ照射し、二つのアルファ粒子へ分裂させた。また同年、マーク・オリファントは二つの重水素を加速衝突させることでヘリウムを作り出す、人工的な核融合に成功した[12]。
1938年には、オットー・ハーン、リーゼ・マイトナー、そして助手のFritz Strassmannは核分裂反応を発見した[13]。
1942年、エンリコ・フェルミを中心としたシカゴ大学の研究チームが世界最初の制御核分裂連鎖反応を成功させた。
核変換技術(消滅処理)
比喩として、化学において、化学物質である青酸カリ(KCN)は人体にとって強力な毒性を持つものであるが、チオ硫酸ナトリウム(Na2S2O3)と化学反応させることで、化学構造が変化し、より毒性の低い化学物質にすることができる。
- (化学式)CN- + Na2S2O3 → NaSCN + NaSO3-
これと同様に、化学ではない原子核の世界においても、放射性物質(核種)に対して、なにか反応(核反応)をさせる[14]ことで、原子核の構造が変化(核変換)し、より有害性の少ない核種にするということが考えられる。
長寿命の放射性核種を核変換によって短寿命核種あるいは安定核種に変えてしまう技術を核変換技術(transmutation technology)と呼ぶ[15](かつては消滅処理と呼ばれていた[16])。 その具体的方法としては、中性子による(n, γ)、(n, 2n)反応を利用してより短寿命の核種に変換させるいわゆる中性子燃焼法が代表的であり[17]、1964年にブルックヘブン国立研究所(BNL)のM.Steinbergらのグループによって、中性子源として原子炉を利用する形で提案されたものが核変換技術の最初である[18]。
この軽水炉を用いる方法では、核分裂生成物は主に熱中性子の捕獲反応((n, γ)反応)によって核変換される[19]。しかしながら、核分裂生成物の熱中性子に対する捕獲断面積は小さいため、核変換を効率良く行わせるためには、熱中性子の照射対象をできるだけ核変換処理の対象の核種(85Kr , 90Sr , 137Csなど)に絞る、すなわち群分離[20]をする必要がある。
日本における施策
文部科学省は2014年度(平成26年度)からJ-PARCに核変換実験施設[21]を建設し、高レベル放射性廃棄物に含まれる放射性物質の半減期を短縮し、減量化を目指している[22]。本格的実験施設は世界初とされる[23]。
核変換の研究全般については、文部科学省研究開発局原子力課放射性廃棄物企画室が取り仕切る原子力科学技術委員会 群分離・核変換技術評価作業部会において、研究・開発の評価、調査・検討をおこなっている。
脚注
- ^ デジタル大辞泉
- ^ 陽子数(原子番号)に関する種類分けの要素元素と呼び、より詳細な区分け方である陽子と中性子の数(質量数、原子番号)に関する種類分けの要素を核種と呼ぶ。
- ^ 核力による結合は化学結合による結合とは比較にならないほど強く、基本的に古典物理学的または化学的な手法に対しては原子の原子核はほぼその影響を受けない。
- ^ なお、純粋に人工的な核変換ではないものの、1919年にラザフォードは、放射性物質から出るα線を窒素の原子核に衝突させることで水素原子核と酸素原子核を生じさせていた。
- ^ そもそも原子炉はウランの同位体の中でも核分裂反応をし難いウラン238から核分裂反応を起こす核種であるプルトニウム239を核変換によって生成するために開発された。
「 シカゴ・パイル1号」も参照
そのため、現在においても原子力発電所の使用済み核燃料を再処理することで核変換によって生成されたプルトニウム239を抽出することができる。ただし、原子力発電所(熱中性子炉)はプルトニウムを生成する効率(転換比)が悪く経済的では無いと言われる。その欠点を克服し効率的(高い転換比で)に核変換を起こす(プルトニウムを生成する)ことができる炉を増殖炉と呼ぶ。原子力発電 p.175
増殖炉としては、高速増殖炉(高速中性子を用いた増殖炉)のもんじゅなどが知られている。
- ^ クローズド・システム(1973) p.30
- ^ 例えば、2014年3月、三菱重工業は、パラジウムと酸化カルシウムからなる多層膜に金属元素を付着させ、この膜に重水素を透過させる手法によってマイクログラム単位の元素変換を確認できたと報告した。セシウム(原子番号55)はプラセオジム(原子番号59)に、ストロンチウム(原子番号38)はモリブデン(原子番号42)に、カルシウム(原子番号20)はチタン(原子番号22)に、タングステン(原子番号74)は白金(原子番号78)になるなど、原子番号が2または4または6大きい元素に変わったという。
- “放射性廃棄物の無害化に道? 三菱重、実用研究へ”. 日本経済新聞 (2014年4月8日). 2014年6月2日閲覧。
- 岩村康弘・伊藤岳彦・坂野 充・栗林志頭真. “三菱重工技報 重水素透過によるパラジウム多層膜上での元素変換の観測”. 三菱重工業株式会社. 2014年11月30日閲覧。
- 吉田 克己 『元素変換現代版<錬金術>のフロンティア』 KADOKAWA/中経出版、2014年。ISBN 978-4040800165。
- ^ アクチノイド系列に属する超ウラン元素の内、核燃料そのものであるプルトニウムを除いたものを、マイナーアクチノイド(Minor actinide)と呼ぶ。プルサーマルや核燃料サイクルにてプルトニウムは放射性廃棄物の中から抽出されることになるため、それらを経た放射性廃棄物に含まれる超ウラン元素で超長期の寿命を持つものはマイナーアクチノイドのみになる。
- ^ マイナーアクチノイドは、熱中性子炉(軽水炉)で処理する場合、中性子を捕獲させ核分裂性物質にする必要があり、炉の設計、特に安全特性に影響を及ぼすため燃料として使えなかった。これに対し、直接核分裂させることができる高速中性子炉である高速増殖炉の核燃料サイクルの中で処理する方法や、加速器駆動未臨界炉や専焼高速炉による階層処理が考えられている。
- ^ 日本においては、原子力発電に伴う使用済み燃料の再処理工程から生ずる核分裂生成物、超ウラン元素等を対象としてその総合対策を検討するため昭和46年8月(1971年8月)に「核分裂生成物等総合対策懇談会」が日本原子力産業会議によって設置された。クローズド・システム(1973) p.2
- ^ Muriel Howorth,Pioneer Research on the Atom: The Life Story of Frederick Soddy, New World, London 1958, pp 83-84; Lawrence Badash, Radium, Radioactivity and the Popularity of Scientific Discovery, Proceedings of the American Philosophical Society 122,1978: 145-54; Thaddeus J. Trenn, The Self-Splitting Atom: The History of the Rutherford-Soddy Collaboration, Taylor & Francis, London, 1977, pp 42, 58-60, 111-17.
- ^ “Sir Mark Oliphant (1901–2000)”. University of Adelaide. 2013年10月5日閲覧。
- ^ Cockcroft and Walton split lithium with high energy protons April 1932.
- ^ ただし、原子核を構成する核子を結びつける核力は化学結合やクーロン力とは比較にならないくらい結びつきが強いため、化学物質のように簡単には((基本的に)低いエネルギーの働きかけで反応させることは)できない。
- ^ 小無(1992) p.1
- ^ 用語「消滅処理」の変更について, ATOMICA:消滅処理 『(4)消滅処理から核変換処理への用語変更の経緯』 参照
- ^ 道家(1975) p.1
- ^ 道家(1974) p.557
- ^ 道家(1974) p.4
- ^ 問題となる核種を半減期や化学的(chemical)な性質に応じたグループに分離することを群分離と呼ぶ。中村(1979) p.1
- ^ “核変換実験施設|J-PARC|大強度陽子加速器施設”. 2014年11月30日閲覧。
- ^ “【科学】高レベル廃棄物対策の切り札 放射能減らす「核変換」本格研究へ”. 産経新聞. (2014年1月20日). http://sankei.jp.msn.com/science/news/140120/scn14012009000004-n1.htm 2014年11月30日閲覧。
- ^ 読売新聞2013年7月7日13S版2面
参考文献
- 小無 健司 (1992), “核分裂生成物の消滅処理”, 核データニュース 2, http://wwwndc.jaea.go.jp/JNDC/ND-news/pdf42/no42-02.pdf
- 道家 忠義 (1974), [ttp://doi.org/10.3327/jaesj.16.557 “放射性廃棄物の消滅処理”], 日本原子力学会誌 Vol.16 (1974) No.11 P557-565, ttp://doi.org/10.3327/jaesj.16.557
- 道家 忠義 (1975), 加速器による核分裂生成物の消滅処理 (『原子力発電の安全性』 原子力安全問題研究会(編)、岩波書店、1975年。)
- 中村 治人 (1979), “再処理高レベル廃液の群分離”, 日本原子力学会誌 Vol.21 (1979) No.4 P293-297, http://doi.org/10.3327/jaesj.21.293
- 梅澤 弘一 (1989), “「OMEGA計画」の概要 新たな可能性を目指す群分離・消滅処理の研究開発”, 日本原子力学会誌 Vol.31 (1989) No.12 P1317-1323, http://doi.org/10.3327/jaesj.31.1317
- 広重 徹 『物理学史Ⅱ』 培風館、1967年。ISBN 4563024066。
- 日本原子力産業会議, ed. (1973), “核分裂生成物等総合対策懇談会報告--放射能クローズド・システムの構想”, 原子力資料 (63): 1-36
- 『原子力発電』 岩波書店〈岩波新書〉、1976年。
関連項目
|
ウィキメディア・コモンズには、核変換に関連するメディアがあります。 |
- 原子核
- 放射性崩壊
- 核分裂反応
- 核融合反応 - 常温核融合
- 核破砕反応
|
|
|
|
外部リンク
- 原子力百科事典ATOMICAの消滅処理の記述
- 原子力委員会 分離変換技術検討会
- 群分離・核変換技術評価について(中間的な論点取りまとめ)
- 核変換実験施設|J-PARC
- 原子力科学技術委員会 群分離・核変換技術評価作業部会
核技術(英語版) |
|
科学 |
原子核 · 核分裂 · 核融合 · 放射 · 放射線 · 放射能 · 化学 · 工学
|
|
燃料 |
核分裂性物質 · 核原料物質(英語版) · トリウム · ウラン (濃縮 • 天然 • 減損) · プルトニウム · 重水素 · 三重水素 · 同位体分離(英語版)
|
|
中性子 |
熱 · 高速 · 核融合(英語版) · 反応断面積 · 捕獲 · 放射化 · 核毒 · 放射(英語版) · 中性子源 · 反射体
|
|
原子力 |
原子力発電
|
国別(英語版) · 経済性(英語版) · 安全(英語版) · 原子力電池
|
|
その他
|
原子力推進 · 核融合エネルギー
|
|
|
核医学 |
画像処理
|
ポジトロン断層撮影 (PET) · 単一光子放射断層撮影 (SPECT)
X線撮影 · コンピュータ断層撮影 (CT)
|
|
治療
|
放射線療法 · トモセラピー · 陽子線 · 近接照射治療(英語版) · 中性子捕捉 (BNCT) · RI内用療法
|
|
|
兵器 |
核兵器
|
原子爆弾 · 水素爆弾 · 中性子爆弾
|
|
関連兵器
|
放射能兵器 · 汚い爆弾
|
|
|
廃棄物 |
産物
|
放射性廃棄物 (高レベル廃棄物) · 核分裂生成物 (長寿命生成物) · 放射化生成物 · アクチノイド: (再処理ウラン(英語版) · 原子炉級プルトニウム(英語版) · マイナーアクチニド(英語版))
|
|
処理
|
燃料サイクル · 使用済燃料 (プール(英語版) • 乾式貯蔵) · 地層処分 · 再処理工場 · 核変換 · 廃炉
|
|
|
議論 |
平和的核爆発 · 核実験 · 核拡散防止条約 · 非核地帯 · 非核兵器地帯 · 反核運動 · 反原子力運動 · 核テロリズム
|
|
核反応 |
|
放射性崩壊 |
核子の放出
|
- アルファ崩壊 (α)
- 中性子放出 (n)
- 陽子放出 (p)
- 自発核分裂 (SF)
- 核分裂反応
- クラスタ崩壊
- 光崩壊
|
|
ベータ崩壊
|
- ベータ崩壊 (β-)
- 電子捕獲 (ε)
- 陽電子放出 (β+)
- 二重ベータ崩壊 (β-β-)
- 二重電子捕獲 (εε)
|
|
核種不変の過程
|
- ガンマ崩壊 (γ)
- 核異性体転移 (IT)
- 内部転換 (IC)
|
|
|
原子核融合 |
方式
|
- 熱核融合
- 中性子捕獲
- 衝突核融合
- スピン偏極核融合
- ピクノ核融合
- ミューオン触媒核融合
- 常温核融合
|
|
人工的な核融合
|
- 核融合エネルギー
- 核融合炉
- 水素爆弾
- 人工放射性元素(超ウラン元素)
|
|
元素合成
|
ビッグバン原子核合成
|
|
|
恒星内元素合成
|
- pp連鎖
- CNOサイクル
- He融合(α反応
- トリプルα)
- 炭素燃焼
- Ne燃焼
- O燃焼
- Si燃焼
- S過程
|
|
超新星元素合成
|
|
|
|
|
その他の過程 |
核破砕反応(宇宙線による核破砕)
|
|