- an adequate or large amount; "he had a quantity of ammunition"
- the concept that something has a magnitude and can be represented in mathematical expressions by a constant or a variable
- satisfy in a limited way; "He contented himself with one glass of beer per day"
- the proportion of a substance that is contained in a mixture or alloy etc.
- the sum or range of what has been perceived, discovered, or learned (同)cognitive content, mental object
- everything that is included in a collection and that is held or included in something; "he emptied the contents of his pockets"; "the two groups were similar in content"
- make content; "I am contented"
- a relative amount; "mix one volume of the solution with ten volumes of water"
- the amount of 3-dimensional space occupied by an object; "the gas expanded to twice its original volume"
- the magnitude of sound (usually in a specified direction); "the kids played their music at full volume" (同)loudness, intensity
- a publication that is one of a set of several similar publications; "the third volume was missing"; "he asked for the 1989 volume of the Annual Review"
- the relative magnitude of something with reference to a criterion; "an adequate amount of food for four people"
- be tantamount or equivalent to; "Her action amounted to a rebellion"
- a factor in a given situation whose bearing and importance is not apparent; "I don
*t know what the new man will do; he*s still an unknown quantity" - one of the four quantities that are the basis of systems of measurement (同)fundamental measure
- an indefinite quantity that is below average size or magnitude (同)small indefinite amount
- a quantity relative to some purpose

- 〈U〉『量』 / 〈C〉(…の)『量』,数,額,高《+『of』+『名』》 / 〈C〉『多量』,多数 / 〈C〉(数学で)量,数量
- 〈C〉《複数形で》(容器などにはいっている)『中身』,内容物,(記録・書物などの)目次 / 〈U〉(書物・演説などの)趣旨 / 〈C〉《~》《修飾語を伴って》含有量,(容器の)容量
- 『満足して』,甘んじて / 満足 / (…で)…'を'『満足させる』《+名+『with』+『名』》
- 〈C〉(特に分厚い)『本』,書物 / 〈C〉(シリーズものの)『巻』,冊(《略》(単数形で)vol.,(複数形で)vols.) / 〈U〉(…の)『体積』,容積《+of+名》 / 〈U〉〈C〉)…の)『量』,かさ《+of+名》 / 〈U〉(…の)『音量』,音の強さ,ボリューム《+of+名》 / 《複数形で》多量(の…),たくさん(の…)《+of+名》
- 〈計算・金額が〉『総計』(…に)『なる』,(…に)のぼる《+『to』+『名』》 / 〈事が〉結局(…に)なる,(…に)等しい《+『to』+『名』》 / 〈U〉《the ~》『総計』,総額,総数(sum) / (ある)『量』,額 / 〈U〉真意;要旨
- (建築の)積算士

出典(authority):フリー百科事典『ウィキペディア（Wikipedia）』「2015/10/26 08:03:49」(JST)

"Few" redirects here. For RAF aviators in the Battle of Britain, see The Few. For the basketball coach, see Mark Few.

**Quantity** is a property that can exist as a magnitude or multitude. Quantities can be compared in terms of "more," "less," or "equal," or by assigning a numerical value in terms of a unit of measurement. Quantity is among the basic classes of things along with quality, substance, change, and relation. Being a fundamental term, quantity is used to refer to any type of quantitative properties or attributes of things. Some quantities are such by their inner nature (as number), while others are functioning as states (properties, dimensions, attributes) of things such as heavy and light, long and short, broad and narrow, small and great, or much and little. A small quantity is sometimes referred to as a **quantulum**.

Two basic divisions of quantity, magnitude and multitude, imply the principal distinction between continuity (continuum) and discontinuity.

Under the names of multitude come what is discontinuous and discrete and divisible into indivisibles, all cases of collective nouns: *army, fleet, flock, government, company, party, people, chorus, crowd, mess*, and *number*. Under the names of magnitude come what is continuous and unified and divisible into divisibles, all cases of non-collective nouns: *the universe, matter, mass, energy, liquid, material, animal, plant, tree*.

Along with analyzing its nature and classification, the issues of quantity involve such closely related topics as the relation of magnitudes and multitudes, dimensionality, equality, proportion, the measurements of quantities, the units of measurements, number and numbering systems, the types of numbers and their relations to each other as numerical ratios.

Thus quantity is a property that exists in a range of magnitudes or multitudes. Mass, time, distance, heat, and angular separation are among the familiar examples of quantitative properties. Two magnitudes of a continuous quantity stand in relation to one another as a ratio which is a real number.

- 1 Background
- 2 Quantitative structure
- 3 Quantity in mathematics
- 4 Quantity in physical science
- 5 Quantity in logic and semantics
- 6 Quantity in natural language
- 7 Further examples
- 8 References
- 9 External links

In mathematics the concept of quantity is an ancient one extending back to the time of Aristotle and earlier. Aristotle regarded quantity as a fundamental ontological and scientific category. In Aristotle's ontology, quantity or quantum was classified into two different types, which he characterized as follows:

- 'Quantum' means that which is divisible into two or more constituent parts, of which each is by nature a 'one' and a 'this'. A quantum is a plurality if it is numerable, a magnitude if it is measurable. 'Plurality' means that which is divisible potentially into non-continuous parts, magnitude that which is divisible into continuous parts; of magnitude, that which is continuous in one dimension is length; in two breadth, in three depth. Of these, limited plurality is number, limited length is a line, breadth a surface, depth a solid. (Aristotle, book v, chapters 11-14, Metaphysics).

In his *Elements*, Euclid developed the theory of ratios of magnitudes without studying the nature of magnitudes, as Archimedes, but giving the following significant definitions:

- A magnitude is a
*part*of a magnitude, the less of the greater, when it measures the greater; A*ratio*is a sort of relation in respect of size between two magnitudes of the same kind.

For Aristotle and Euclid, relations were conceived as whole numbers (Michell, 1993). John Wallis later conceived of ratios of magnitudes as real numbers as reflected in the following:

- When a comparison in terms of ratio is made, the resultant ratio often [namely with the exception of the 'numerical genus' itself] leaves the genus of quantities compared, and passes into the numerical genus, whatever the genus of quantities compared may have been. (John Wallis,
*Mathesis Universalis*)

That is, the ratio of magnitudes of any quantity, whether volume, mass, heat and so on, is a number. Following this, Newton then defined number, and the relationship between quantity and number, in the following terms: "By *number* we understand not so much a multitude of unities, as the abstracted ratio of any quantity to another quantity of the same kind, which we take for unity" (Newton, 1728).

Continuous quantities possess a particular structure that was first explicitly characterized by Hölder (1901) as a set of axioms that define such features as *identities* and *relations* between magnitudes. In science, quantitative structure is the subject of empirical investigation and cannot be assumed to exist *a priori* for any given property. The linear continuum represents the prototype of continuous quantitative structure as characterized by Hölder (1901) (translated in Michell & Ernst, 1996). A fundamental feature of any type of quantity is that the relationships of equality or inequality can in principle be stated in comparisons between particular magnitudes, unlike quality, which is marked by likeness, similarity and difference, diversity. Another fundamental feature is additivity. Additivity may involve concatenation, such as adding two lengths A and B to obtain a third A + B. Additivity is not, however, restricted to extensive quantities but may also entail relations between magnitudes that can be established through experiments that permit tests of hypothesized observable manifestations of the additive relations of magnitudes. Another feature is continuity, on which Michell (1999, p. 51) says of length, as a type of quantitative attribute, "what continuity means is that if any arbitrary length, a, is selected as a unit, then for every positive real number, *r*, there is a length b such that b = *r*a".

This section may be confusing or unclear to readers. (March 2012) |

Magnitude and multitude, the two principal types of quantities, are further divided as mathematical and physical. In formal terms, quantities—their ratios, proportions, order and formal relationships of equality and inequality—are studied by mathematics. The essential part of mathematical quantities consists of having a collection of variables, each assuming a set of values. These can be a set of a single quantity, referred to as a scalar when represented by real numbers, or have multiple quantities as do vectors and tensors, two kinds of geometric objects.

The mathematical usage of a quantity can then be varied and so is situationally dependent. Quantities can be used as being infinitesimal, arguments of a function, variables in an expression (independent or dependent), or probabilistic as in random and stochastic quantities. In mathematics, magnitudes and multitudes are also not only two distinct kinds of quantity but furthermore relatable to each other.

Number theory covers the topics of the discrete quantities as numbers: number systems with their kinds and relations. Geometry studies the issues of spatial magnitudes: straight lines, curved lines, surfaces and solids, all with their respective measurements and relationships.

Establishing quantitative structure and relationships *between* different quantities is the cornerstone of modern physical sciences. Physics is fundamentally a quantitative science. Its progress is chiefly achieved due to rendering the abstract qualities of material entities into physical quantities, by postulating that all material bodies marked by quantitative properties or physical dimensions are subject to some measurements and observations. Setting the units of measurement, physics covers such fundamental quantities as space (length, breadth, and depth) and time, mass and force, temperature, energy, and quantum.

A distinction has also been made between intensive quantity and extensive quantity as two types of quantitative property, state or relation. The magnitude of an *intensive quantity* does not depend on the size, or extent, of the object or system of which the quantity is a property, whereas magnitudes of an *extensive quantity* are additive for parts of an entity or subsystems. Thus, magnitude does depend on the extent of the entity or system in the case of extensive quantity. Examples of intensive quantities are density and pressure, while examples of extensive quantities are energy, volume and mass.

In respect to quantity, propositions are grouped as universal and particular, applying to the whole subject or a part of the subject to be predicated. Accordingly, there are existential and universal quantifiers. In relation to the meaning of a construct, quantity involves two semantic dimensions: 1. extension or extent (determining the specific classes or individual instances indicated by the construct) 2. intension (content or comprehension or definition) measuring all the implications (relationships and associations involved in a construct, its intrinsic, inherent, internal, built-in, and constitutional implicit meanings and relations).

In human languages, including English, number is a syntactic category, along with person and gender. The quantity is expressed by identifiers, definite and indefinite, and quantifiers, definite and indefinite, as well as by three types of nouns: 1. count unit nouns or countables; 2. mass nouns, uncountables, referring to the indefinite, unidentified amounts; 3. nouns of multitude (collective nouns). The word ‘number’ belongs to a noun of multitude standing either for a single entity or for the individuals making the whole. An amount in general is expressed by a special class of words called identifiers, indefinite and definite and quantifiers, definite and indefinite. The amount may be expressed by: singular form and plural from, ordinal numbers before a count noun singular (first, second, third...), the demonstratives; definite and indefinite numbers and measurements (hundred/hundreds, million/millions), or cardinal numbers before count nouns. The set of language quantifiers covers "a few, a great number, many, several (for count names); a bit of, a little, less, a great deal (amount) of, much (for mass names); all, plenty of, a lot of, enough, more, most, some, any, both, each, either, neither, every, no". For the complex case of unidentified amounts, the parts and examples of a mass are indicated with respect to the following: a measure of a mass (two kilos of rice and twenty bottles of milk or ten pieces of paper); a piece or part of a mass (part, element, atom, item, article, drop); or a shape of a container (a basket, box, case, cup, bottle, vessel, jar).

Some further examples of quantities are:

- 1.76 litres (liters) of milk, a continuous quantity
- 2
*πr*metres, where*r*is the length of a radius of a circle expressed in metres (or meters), also a continuous quantity - one apple, two apples, three apples, where the number is an integer representing the count of a denumerable collection of objects (apples)
- 500 people (also a count)
- a
*couple*conventionally refers to two objects *a few*usually refers to an indefinite, but usually small, number greater than two.*quite a few*also refers to an indefinite, but surprisingly (in relation to the context) large number.*several*refers to an indefinite, but usually small, number - usually indefinitely greater than "a few".- OPEC has a few members

This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations. Please improve this article by introducing more precise citations. (July 2010) |

- Aristotle, Logic (Organon): Categories, in Great Books of the Western World, V.1. ed. by Adler, M.J., Encyclopaedia Britannica, Inc., Chicago (1990)
- Aristotle, Physical Treatises: Physics, in Great Books of the Western World, V.1, ed. by Adler, M.J., Encyclopaedia Britannica, Inc., Chicago (1990)
- Aristotle, Metaphysics, in Great Books of the Western World, V.1, ed. by Adler, M.J., Encyclopaedia Britannica, Inc., Chicago (1990)
- Hölder, O. (1901). Die Axiome der Quantität und die Lehre vom Mass.
*Berichte über die Verhandlungen der Königlich Sachsischen Gesellschaft der Wissenschaften zu Leipzig*, Mathematische-Physicke Klasse, 53, 1-64. - Klein, J. (1968).
*Greek Mathematical Thought and the Origin of Algebra. Cambridge*. Mass: MIT Press. - Laycock, H. (2006). Words without Objects: Oxford, Clarendon Press. Oxfordscholarship.com
- Michell, J. (1993). The origins of the representational theory of measurement: Helmholtz, Hölder, and Russell.
*Studies in History and Philosophy of Science*, 24, 185-206. - Michell, J. (1999).
*Measurement in Psychology*. Cambridge: Cambridge University Press. - Michell, J. & Ernst, C. (1996). The axioms of quantity and the theory of measurement: translated from Part I of Otto Hölder’s German text "Die Axiome der Quantität und die Lehre vom Mass".
*Journal of Mathematical Psychology*, 40, 235-252. - Newton, I. (1728/1967). Universal Arithmetic: Or, a Treatise of Arithmetical Composition and Resolution. In D.T. Whiteside (Ed.),
*The mathematical Works of Isaac Newton*, Vol. 2 (pp. 3–134). New York: Johnson Reprint Corp. - Wallis, J.
*Mathesis universalis*(as quoted in Klein, 1968).

Look up or quantity in Wiktionary, the free dictionary.few |

Wikiquote has quotations related to: Quantity |

全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.

- 1. 睡眠不足の定義とその影響 definition and consequences of sleep deprivation
- 2. テレビおよびメディアの暴力 television and media violence
- 3. Chapter 13A：尿中電解質の意義 chapter 13a meaning of urine electrolytes
- 4. 病巣内注入 intralesional injection
- 5. 特別な状況における強化インスリン療法の症例 illustrative cases of intensive insulin therapy in special situations

- Microwave irradiation: synthesis and characterization of α-ketoamide and bis (α-ketoamide) derivatives via the ring opening of N-acetylisatin.

- El-Faham A1, Khattab SN2, Ghabbour HA3, Fun HK3, H Siddiqui MR4.
- Chemistry Central journal.Chem Cent J.2014 Apr 28;8(1):27. eCollection 2014.
- BACKGROUND: The carbonyl group at position 2 of N-acetylisatin behaves as an amide which is more susceptible to nucleophilic attack via ring-opening in the presence of nucleophiles. Because of this behavior, in the present work we describe the microwave synthesis of a series of α-ketoamide and bis-
- PMID 24839460

- Phototherapy trends in dermatology.

- Luersen K1, Dabade TS, West CE, Davis SA, Feldman SR.
- The Journal of dermatological treatment.J Dermatolog Treat.2014 Dec;25(6):487-8. doi: 10.3109/09546634.2013.806767. Epub 2013 Jun 2.
- BACKGROUND: Use of phototherapy in the United States declined during the 1990s, largely due to unfavorable economic incentives. The trends in phototherapy since then are not well characterized.METHODS: We analyzed the National Ambulatory Medical Care Survey (NAMCS) data on quantity of phototherapy v
- PMID 23688185

- Characterisation and fate of grayanatoxins in mad honey produced from Rhododendron ponticum nectar.

- Kurtoglu AB1, Yavuz R2, Evrendilek GA3.
- Food chemistry.Food Chem.2014 Oct 15;161:47-52. doi: 10.1016/j.foodchem.2014.03.127. Epub 2014 Apr 4.
- Mad honey from Rhododendron ponticum nectar is produced in a large quantity in the western Black Sea region of Turkey and causes poisoning due to consumption of grayanatoxins (GTX I and III). There are a few studies about characterisation of GTXs in mad honey produced from R.ponticum. This study qua
- PMID 24837920

- Highly sensitive homogenous chemiluminescence immunoassay using gold nanoparticles as label.

- Luo J1, Cui X1, Liu W1, Li B2.
- Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.Spectrochim Acta A Mol Biomol Spectrosc.2014 Oct 15;131:243-8. doi: 10.1016/j.saa.2014.04.076. Epub 2014 Apr 26.
- Homogeneous immunoassay is becoming more and more attractive for modern medical diagnosis because it is superior to heterogeneous immunoassay in sample and reagent consumption, analysis time, portability and disposability. Herein, a universal platform for homogeneous immunoassay, using human immunog
- PMID 24835732

- 平成26年度秋季研究発表大会特集 リユース・サプライチェーンにおける回収量の時間変化が経済発注量に及ぼす影響

- 日本設備管理学会誌 = Journal of the Society of Plant Engineers Japan 27(3), 100-108, 2015-10
- NAID 40020626623

- An Analysis of the Factors Influencing Marketing Channel Choice by Paddy Rice Farmers in Myanmar

- Journal of the Faculty of Agriculture, Kyushu University 60(2), 535-542, 2015-09-18
- NAID 120005661392

- Development of One-handed Milking Device to Collect Milk From Lactating Rats: Analysis of Feeding With Progressive Lactation

- Shimane journal of medical science 32(1), 13-18, 2015-09-01
- NAID 120005665882

- 多量飲酒の習慣がない人間ドック健診受診者における非アルコール性脂肪性肝疾患と腎結石の関連

- 人間ドック = Ningen Dock : official journal of the Japanese Society of Human Dry Dock 30(3), 608-615, 2015-09
- NAID 40020608345

- quantityとは。意味や和訳。[名]（複 -ties）1 [U][C]量，数量，分量，額，高(amount)；定量. ⇒QUALITY[名]2a small [a large] quantity of water少量[大量]の水a quantity of food多少の食料the sheer quantity of data膨大なデータ量aim ...

- We eat more in quantity than others, but a large proportion is fruit, which furnishes all our liquid food except fresh water. The Natural Cure of Consumption, Constipation, Bright's Disease, Neuralgia, Rheumatism, Charles Edward . ...

- プログレッシブ英和中辞典(第4版) - /kwntti | kwn-/[名]（複-ties）1 [U][C]量, 数量, 分量, 額, 高(amount)；定量. ⇒QUALITY[名]2a small [a large] quantity of water｜少量[大量]の水a quantity of food｜多少の食料the sheer quantity ...

リンク元 | 「content」「量」「volume」「amount」「含量」 |

拡張検索 | 「small quantity」 |

- n.

- 内容、内容物、量、含有量、含量

- (ラテン語 continereの過去分詞 contentus(中身が満たされた。conainの過去分詞に相当する語)

- adj.[叙述的]

- (～に)(ほどほどのところで)満足して、甘んじて(with)。(～と言うことに)安心する(that節)(⇔discontent)
- (be ～ to do)喜んで～する(willing)。(～であることに)満足する、甘んじる(that節)

- n.

- 満足

- vt.

- (事・人が)(人)を'(～で)満足させる

(～ oneself)(不十分な物・事で)満足する(with (doing))

- n.

- n.

- v.