Not to be confused with Cell (biology).
|
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (November 2011) |
Understanding cells in terms of their molecular components.
Cell biology (formerly cytology, from the Greek κυτος, kytos, "contain") is a branch of biology that studies cells – their physiological properties, their structure, the organelles they contain, interactions with their environment, their life cycle, division, death and cell function. This is done both on a microscopic and molecular level. Cell biology research encompasses both the great diversity of single-celled organisms like bacteria and protozoa, as well as the many specialized cells in multicellular organisms such as humans, plants, and sponges.
Knowing the components of cells and how cells work is fundamental to all biological sciences. Appreciating the similarities and differences between cell types is particularly important to the fields of cell and molecular biology as well as to biomedical fields such as cancer research and developmental biology. These fundamental similarities and differences provide a unifying theme, sometimes allowing the principles learned from studying one cell type to be extrapolated and generalized to other cell types. Therefore, research in cell biology is closely related to genetics, biochemistry, molecular biology, immunology, and developmental biology.
Contents
- 1 Processes
- 2 Movement of proteins
- 3 Other cellular processes
- 4 Internal cellular structures
- 5 Techniques used to study cells
- 6 Notable cell biologists
- 7 See also
- 8 Notes
- 9 External links
Processes
|
This section is empty. You can help by adding to it. (March 2014) |
Movement of proteins
Endothelial cells under the microscope. Nuclei are stained blue with DAPI, microtubles are marked green by an antibody and actin filaments are labelled red with phalloidin.
Each type of protein is usually sent to a particular part of the cell. An important part of cell biology is the investigation of molecular mechanisms by which proteins are moved to different places inside cells or secreted from cells.
Most proteins are synthesized by ribosomes in the rough endoplasmic reticulum (RER). Ribosomes contain the nucleic acid RNA, which assembles and joins amino acids to make proteins. They can be found alone or in groups within the cytoplasm as well as on the RER. This process is known as protein biosynthesis. Biosynthesis (also called biogenesis) is an enzyme-catalyzed process in cells of living organisms by which substrates are converted to more complex products (also simply known as protein translation). Some proteins, such as those to be incorporated in membranes (known as membrane proteins), are transported into the RER during synthesis. This process can be followed by transportation and processing in the Golgi apparatus. The Golgi apparatus is a large organelle that processes proteins and prepares them for use both inside and outside the cell. The Golgi apparatus is somewhat like a post office. It receives items (proteins from the ER), packages and labels them, and then sends them on to their destinations (to different parts of the cell or to the cell membrane for transport out of the cell).[1] From the Golgi, membrane proteins can move to the plasma membrane, to other sub-cellular compartments, or they can be secreted from the cell. The endoplasmic reticulum (ER) and Golgi can be thought of as the "membrane protein synthesis compartment" and the "membrane protein processing compartment", respectively. There is a semi-constant flux of proteins through these compartments. ER and Golgi-resident proteins associate with other proteins but remain in their respective compartments. Other proteins "flow" through the ER and Golgi to the plasma membrane. Motor proteins transport membrane protein-containing vesicles along cytoskeletal tracks to distant parts of cells such as the axon terminals of neurons.
Some proteins that are made in the cytoplasm contain structural features that target them for transport into mitochondria or the cell nucleus. Some mitochondrial proteins are made inside mitochondria and are coded for by mitochondrial DNA. In plants, chloroplasts also make some cell proteins.
Extracellular and cell surface proteins destined to be degraded can move back into intracellular compartments upon being incorporated into endocytosed vesicles, some of which fuse with lysosomes where the proteins are broken down to their individual amino acids. The degradation of some membrane proteins begins while still at the cell surface when they are separated by secretases. Proteins that function in the cytoplasm are often degraded by proteasomes.
Other cellular processes
- Active transport and Passive transport - Movement of molecules into and out of cells.
- Autophagy - The process whereby cells "eat" their own internal components or microbial invaders.
- Adhesion - Holding together cells and tissues.
- Division - By which cells reproduce either by mitosis (to produce clones of the parent cell) or Meiosis (to produce haploid gametes)
- Cell movement - Chemotaxis, contraction, cilia and flagella.
- Cell signaling - Regulation of cell behavior by signals from outside.
- DNA repair - Cell death and cell senescence.
- Metabolism - Glycolysis, respiration, photosynthesis, and chemosynthesis.
- Transcription and mRNA splicing - Gene expression.
Internal cellular structures
- Chloroplast - key organelle for photosynthesis (only found in plant cells)
- Cell wall - extra layer of protection (only found in plant cells)
- Cell membrane - the part of the cell which separates the cells from the outside environment and protects the cell, as well as regulating what goes in and out of the cell
- Cilium - motile structure of eukaryotes having a cytoskeleton, the axoneme.
- Cytoplasm - contents of the main fluid-filled space inside cells. Any chemical reactions also happen in this jelly-like substance.
- Cytoskeleton - protein filaments inside cells
- Endoplasmic reticulum - major site of membrane protein synthesis
- Flagellum - motile structure of bacteria, archaea and eukaryotes
- Golgi apparatus - site of protein glycosylation in the endomembrane system
- Lipid bilayer - fundamental organizational structure of cell membranes
- Lysosome - break down cellular waste products and debris into simple compounds (only found in animal cells)
- Membrane lipid and protein barrier
- Mitochondrion - major energy-producing organelle by releasing it in the form of ATP
- Organelle - term used for major subcellular structures
- Ribosome - RNA and protein complex required for protein synthesis in cells
- Vesicle - small membrane-bounded spheres inside cells
- Nucleus - nucleus contains chromosome which contain DNA
- large central vacuole - contain cell sap (only found in plant cells)
- starch grain - found in the cytoplasm of a typical plant cell.It stores chemical energy of the plant.
Techniques used to study cells
See also: Green fluorescent protein and Fluorescence microscope
Cells may be observed under the microscope, using several different techniques; these include optical microscopy, transmission electron microscopy, scanning electron microscopy, fluorescence microscopy, and confocal microscopy.
There are several different methods used in the study of cells:
- Cell culture is the basic technique of growing cells in a laboratory independent of an organism.
- Immunostaining, also known as immunohistochemistry, is a specialized histological method used to localize proteins in cells or tissue slices. Unlike regular histology, which uses stains to identify cells, cellular components or protein classes, immunostaining requires the reaction of an antibody directed against the protein of interest within the tissue or cell. Through the use of proper controls and published protocols (need to add reference links here), specificity of the antibody-antigen reaction can be achieved. Once this complex is formed, it is identified via either a "tag" attached directly to the antibody, or added in an additional technical step. Commonly used "tags" include fluorophores or enzymes. In the case of the former, detection of the location of the "immuno-stained" protein occurs via fluorescence microscopy. With an enzymatic tag, such as horse radish peroxidase, a chemical reaction is carried out that results in a dark color in the location of the protein of interest. This darkened pattern is then detected using light microscopy.
- Computational genomics is used to find patterns in genomic information [2]
- DNA microarrays identify changes in transcript levels between different experimental conditions.
- Gene knockdown mutates a selected gene.
- In situ hybridization shows which cells are expressing a particular RNA transcript.
- PCR can be used to determine how many copies of a gene are present in a cell.
- Transfection introduces a new gene into a cell, usually an expression construct
Purification of cells and their parts Purification may be performed using the following methods:
- Cell fractionation
- Release of cellular organelles by disruption of cells.
- Separation of different organelles by centrifugation.
- Flow cytometry
- Immunoprecipitation
- Proteins extracted from cell membranes by detergents and salts or other kinds of chemicals.
Notable cell biologists
- Jean Baptiste Carnoy
- Peter Agre
- Günter Blobel
- Robert Brown
- Geoffrey M. Cooper
- Christian de Duve
- Robert Hooke
- H. Robert Horvitz
|
- Marc Kirschner
- Anton van Leeuwenhoek
- Ira Mellman
- Peter D. Mitchell
- Rudolf Virchow
- Paul Nurse
- George Emil Palade
- Keith R. Porter
|
- Jan Evangelista Purkyně
Czech anatomist Jan Evangelista Purkyně is best known for his 1837 discovery of Purkinje cells.
- Ray Rappaport
- Michael Swann
- Roger Tsien
- Edmund Beecher Wilson
- Kenneth R. Miller
- Matthias Jakob Schleiden
- Theodor Schwann
|
See also
|
Wikimedia Commons has media related to Cell biology. |
|
Biology portal |
|
Molecular and Cellular Biology portal |
|
Science portal |
Main article: Outline of cell biology
- Cell disruption
- Cellular microbiology
- Institute of Molecular and Cell Biology (disambiguation)
- Prokaryotic cell
- The American Society for Cell Biology
- Cell physiology
- Green fluorescent protein(GFP)
Notes
- Penner-Hahn, James E. (2013). "Chapter 2. Technologies for Detecting Metals in Single Cells. Section 4. Intrinsic X-Ray Fluorescence". In Banci, Lucia (Ed.). Metallomics and the Cell. Metal Ions in Life Sciences 12. Springer. doi:10.1007/978-94-007-5561-1_2. ISBN 978-94-007-5560-4. electronic-book ISBN 978-94-007-5561-1 ISSN 1559-0836electronic-ISSN 1868-0402
- Cell and Molecular Biology by Karp 5th Ed., ISBN 0-471-46580-1
- This article incorporates public domain material from the NCBI document "Science Primer".
- ^ Open Content Flexbook- Cellular Structure & functions(for ribosomes and Golgi body info)
- ^ Cristianini, N. and Hahn, M. Introduction to Computational Genomics, Cambridge University Press, 2006. (ISBN 9780521671910 | ISBN 0-521-67191-4)
External links
|
Wikibooks has more on the topic of: Cell biology |
|
Wikiversity has learning materials about Cell biology |
Library resources about
Cell biology
|
- Resources in your library
|
- Cell Centered Database
- Cell Biology at DMOZ
- Aging Cell
- "Francis Harry Compton Crick (1916-2004)" by A. Andrei at the Embryo Project Encyclopedia
Biology
|
|
Subdisciplines |
- Anatomy
- Astrobiology
- Biochemistry
- Biogeography
- Biological classification
- Biomechanics
- Biophysics
- Bioinformatics
- Biostatistics
- Botany
- Cell biology
- Cellular microbiology
- Chemical biology
- Chronobiology
- Cognitive biology
- Computational biology
- Conservation biology
- Developmental biology
- Ecology
- Epidemiology
- Epigenetics
- Evolutionary biology
- Genetics
- Genomics
- Histology
- Human biology
- Immunology
- Lipidology
- Marine biology
- Mathematical biology
- Microbiology
- Molecular biology
- Mycology
- Nanobiotechnology
- Neuroscience
- Nutrition
- Origin of life
- Paleontology
- Parasitology
- Pathology
- Pharmacology
- Physiology
- Quantum biology
- Reproductive biology
- Structural biology
- Systematics
- Systems biology
- Toxicology
- Virology
- Zoology
|
|
|
Hierarchy of life |
- Biosphere > Ecosystem > Community (Biocoenosis) > Population > Organism > Organ system > Organ > Tissue > Cell > Organelle > Biomolecular complex > Molecule (Macromolecule, Biomolecule) > Atom
|
|
Foundations |
- Cell theory
- Ecology
- Energy Transformation
- Evolution
- Genetics
- Homeostasis
- Synthetic biology
- Taxonomy
|
|
Principles |
Evolution |
- Adaptation
- Genetic drift
- Gene flow
- Macroevolution
- Microevolution
- Mutation
- Natural selection
- Speciation
|
|
Ecology |
- Biodiversity
- Biological interaction
- Community
- Ecosystem
- Habitat
- Niche
- Population dynamics
- Resources
|
|
Molecular
biology |
- Cell signaling
- Development
- Epigenetics
- Gene regulation
- Meiosis
- Mitosis
- Post-transcriptional modification
|
|
Biochemistry |
- Carbohydrates
- Lipids
- Metabolism
- Nucleic acids
- Photosynthesis
- Proteins
|
|
|
Glossaries |
- Botanical terms
- Ecological terms
- Plant morphology terms
|
|
- Category
- Commons
- Portal
- WikiProject
|
|
Authority control |
- GND: 4070177-3
- NDL: 00569968
|
|