β1受容体、β1レセプター
WordNet
- to remain unmolested, undisturbed, or uninterrupted -- used only in infinitive form; "let her be"
- work in a specific place, with a specific subject, or in a specific function; "He is a herpetologist"; "She is our resident philosopher" (同)follow
- have life, be alive; "Our great leader is no more"; "My grandfather lived until the end of war" (同)live
- be identical to; be someone or something; "The president of the company is John Smith"; "This is my house"
- happen, occur, take place; "I lost my wallet; this was during the visit to my parents house"; "There were two hundred people at his funeral"; "There was a lot of noise in the kitchen"
- have the quality of being; (copula, used with an adjective or a predicate noun); "John is rich"; "This is not a good answer"
- occupy a certain position or area; be somewhere; "Where is my umbrella?" "The toolshed is in the back"; "What is behind this behavior?"
- spend or use time; "I may be an hour"
- stake on the outcome of an issue; "I bet $100 on that new horse"; "She played all her money on the dark horse" (同)wager, play
- the act of gambling; "he did it on a bet" (同)wager
- maintain with or as if with a bet; "I bet she will be there!" (同)wager
- second in order of importance; "the candidate, considered a beta male, was perceived to be unable to lead his party to victory"
- the 2nd letter of the Greek alphabet
- preliminary or testing stage of a software or hardware product; "a beta version"; "beta software"
- a cellular structure that is postulated to exist in order to mediate between a chemical agent that acts on nervous tissue and the physiological response
- beets (同)genus Beta
PrepTutorEJDIC
- 《連結語として補語を伴なって…『である』,…だ,…です / 《位置・場所を表す語句を伴って》(…に)『ある』,いる(occupy a place or situation) / 〈物事が〉『存在する』,ある(exist);〈生物が〉生存する,生きている(live) / 行われる,起こる,発生する(take place, occur) / 存続する,そのままでいる(remain as before) / 《『be to』 do》 / …する予定である,…することになっている / …すべきだ / 《受動態の不定詞を伴って》…できる / 《命令》…するのだ / 《条件節に》…する意図がある / 《『if…were to』 do》…するとしたなら / 《『be』 do『ing』》《進行形》 / 《進行中の動作》…している,しつつある / 《近い未来》…しようとしている,するつもり / 《動作の反復》(いつも)…している / 《『be』+『他動詞の過去分詞』》《受動態》…される,されている / 《『be』+『自動詞の過去分詞』》《完了形》…した[状態にある]
- 『かけ』・(…との)かけ《+『with』+『名』》 / かけた物(金) / かけの対象 / 〈金・物〉'を'『かける』 / (かけ事・ゲームなどで)〈人〉‘と'『かけをする』《+『名』〈人〉+『on』+『名』》 / (…に)『かける』《+『on』(『against』)+『名』(one's do『ing』)》
- ベータ(ギリシア語アルファベットの第2文字;B,β;英語のB,b に遭当)
- =sense organ / 受信装置
Wikipedia preview
出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/06/28 01:20:05」(JST)
[Wiki en表示]
Adrenoceptor beta 1 |
Available structures |
PDB |
Ortholog search: PDBe, RCSB |
List of PDB id codes |
2LSQ
|
|
|
Identifiers |
Symbols |
ADRB1 ; ADRB1R; B1AR; BETA1AR; RHR |
External IDs |
OMIM: 109630 MGI: 87937 HomoloGene: 20171 IUPHAR: 28 ChEMBL: 213 GeneCards: ADRB1 Gene |
Gene ontology |
Molecular function |
• beta-adrenergic receptor activity
• beta1-adrenergic receptor activity
• receptor signaling protein activity
• Ras guanyl-nucleotide exchange factor activity
• protein binding
• drug binding
• PDZ domain binding
• alpha-2A adrenergic receptor binding
• dopamine binding
• protein heterodimerization activity
• epinephrine binding
• norepinephrine binding
|
Cellular component |
• nucleus
• early endosome
• plasma membrane
• integral component of plasma membrane
|
Biological process |
• positive regulation of heart rate by epinephrine-norepinephrine
• diet induced thermogenesis
• vasodilation by norepinephrine-epinephrine involved in regulation of systemic arterial blood pressure
• positive regulation of the force of heart contraction by norepinephrine
• positive regulation of systemic arterial blood pressure
• glycogen catabolic process
• apoptotic process
• activation of adenylate cyclase activity
• Rho protein signal transduction
• aging
• memory
• response to cold
• sensory perception of pain
• positive regulation of cAMP biosynthetic process
• heat generation
• positive regulation of Ras GTPase activity
• protein localization to organelle
• negative regulation of urine volume
• negative regulation of multicellular organism growth
• wound healing
• fear response
• positive regulation of apoptotic process
• positive regulation of cAMP-mediated signaling
• negative regulation of smooth muscle contraction
• positive regulation of saliva secretion
• brown fat cell differentiation
• regulation of calcium ion transport
• lipid homeostasis
• regulation of inhibitory postsynaptic membrane potential
• positive regulation of cell growth involved in cardiac muscle cell development
• adenylate cyclase-activating adrenergic receptor signaling pathway
• regulation of cardiac muscle cell contraction
• positive regulation of renin secretion into blood stream
• positive regulation of cation channel activity
|
Sources: Amigo / QuickGO |
|
RNA expression pattern |
|
More reference expression data |
Orthologs |
Species |
Human |
Mouse |
Entrez |
153 |
11554 |
Ensembl |
ENSG00000043591 |
ENSMUSG00000035283 |
UniProt |
P08588 |
P34971 |
RefSeq (mRNA) |
NM_000684 |
NM_007419 |
RefSeq (protein) |
NP_000675 |
NP_031445 |
Location (UCSC) |
Chr 10:
115.8 – 115.81 Mb |
Chr 19:
56.72 – 56.72 Mb |
PubMed search |
[1] |
[2] |
|
The beta-1 adrenergic receptor (β1 adrenoreceptor), also known as ADRB1, is a beta-adrenergic receptor, and also denotes the human gene encoding it.[1] It is a G-protein coupled receptor associated with the Gs heterotrimeric G-protein and is expressed predominantly in cardiac tissue.
Contents
- 1 Receptor
- 1.1 Actions
- 1.2 Agonists
- 1.3 Antagonists
- 1.4 Mechanism
- 2 Gene
- 3 Interactions
- 4 See also
- 5 References
- 6 External links
- 7 Further reading
Receptor
Actions
Actions of the β1 receptor include:
- stimulate viscous, amylase-filled secretions from salivary glands[2]
- Increase cardiac output
- Increase heart rate[3] in sinoatrial node (SA node) (chronotropic effect)
- Increase atrial cardiac muscle contractility. (inotropic effect)
- Increases contractility and automaticity[3] of ventricular cardiac muscle.
- Increases conduction and automaticity[3] of atrioventricular node (AV node)
- Renin release from juxtaglomerular cells.[3]
- Lipolysis in adipose tissue.[3]
- Receptor also present in cerebral cortex.
Agonists
Isoprenaline has higher affinity for β1 than adrenaline, which, in turn, binds with higher affinity than noradrenaline at physiologic concentrations. Selective agonists to the beta-1 receptor are:
- Denopamine
- Dobutamine[2] (in cardiogenic shock)
- Xamoterol[2] (cardiac stimulant)
Antagonists
(Beta blockers) β1-selective ones are:
- Acebutolol (in hypertension, angina pectoris and arrhythmias)
- Atenolol[2] (in hypertension, coronary heart disease, arrhythmias and myocardial infarction)
- Betaxolol (in hypertension and glaucoma)
- Bisoprolol[4] (in hypertension, coronary heart disease, arrhythmias, myocardial infarction and ischemic heart diseases)
- Esmolol (in arrhythmias)
- Metoprolol[2] (in hypertension, coronary heart disease, myocardial infarction and heart failure)
- Nebivolol (in hypertension)
- Vortioxetine (antidepressant)
Mechanism
Gs renders adenylate cyclase activated, resulting in increase of cAMP.
Gene
Specific polymorphisms in the ADRB1 gene have been shown to affect the resting heart rate and can be involved in heart failure.[1]
Interactions
Beta-1 adrenergic receptor has been shown to interact with DLG4[5] and GIPC1.[6] Interaction between testosterone and β-1 ARs have been shown in anxiolytic behaviors in the basolateral amygdala.[7]
See also
- Other adrenergic receptors
- Alpha-1 adrenergic receptor
- Alpha-2 adrenergic receptor
- Beta-2 adrenergic receptor
- Beta-3 adrenergic receptor
References
- ^ a b "Entrez Gene: ADRB1 adrenergic, beta-1-, receptor".
- ^ a b c d e Rang, H. P. (2003). Pharmacology. Edinburgh: Churchill Livingstone. ISBN 0-443-07145-4. Page 163
- ^ a b c d e Fitzpatrick, David; Purves, Dale; Augustine, George (2004). "Table 20:2". Neuroscience (Third ed.). Sunderland, Mass: Sinauer. ISBN 0-87893-725-0.
- ^ American Society of Health-System Pharmacists, Inc. (2005-01-01). "Bisoprolol". MedlinePlus Drug Information. U.S. National Library of Medicine, National Institutes of Health. Archived from the original on 2008-05-20. Retrieved 2008-06-06.
- ^ Hu LA, Tang Y, Miller WE, Cong M, Lau AG, Lefkowitz RJ et al. (Dec 2000). "beta 1-adrenergic receptor association with PSD-95. Inhibition of receptor internalization and facilitation of beta 1-adrenergic receptor interaction with N-methyl-D-aspartate receptors". The Journal of Biological Chemistry 275 (49): 38659–66. doi:10.1074/jbc.M005938200. PMID 10995758.
- ^ Hu LA, Chen W, Martin NP, Whalen EJ, Premont RT, Lefkowitz RJ (Jul 2003). "GIPC interacts with the beta1-adrenergic receptor and regulates beta1-adrenergic receptor-mediated ERK activation". The Journal of Biological Chemistry 278 (28): 26295–301. doi:10.1074/jbc.M212352200. PMID 12724327.
- ^ Mard-Soltani M, Kesmati M, Khajehpour L, Rasekh A, Shamshirgar-Zadeh A (April 2012). "Interaction between Anxiolytic Effects of Testosterone and β-1 Adrenoceptors of Basolateral Amygdala". International Journal of Pharmacology 8 (5): 344–354. doi:10.3923/ijp.2012.344.354.
External links
- "β1-adrenoceptor". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology.
Further reading
- Frielle T, Kobilka B, Lefkowitz RJ, Caron MG (Jul 1988). "Human beta 1- and beta 2-adrenergic receptors: structurally and functionally related receptors derived from distinct genes". Trends in Neurosciences 11 (7): 321–4. doi:10.1016/0166-2236(88)90095-1. PMID 2465637.
- Muszkat M (Aug 2007). "Interethnic differences in drug response: the contribution of genetic variability in beta adrenergic receptor and cytochrome P4502C9". Clinical Pharmacology and Therapeutics 82 (2): 215–8. doi:10.1038/sj.clpt.6100142. PMID 17329986.
- Yang-Feng TL, Xue FY, Zhong WW, Cotecchia S, Frielle T, Caron MG et al. (Feb 1990). "Chromosomal organization of adrenergic receptor genes". Proceedings of the National Academy of Sciences of the United States of America 87 (4): 1516–20. doi:10.1073/pnas.87.4.1516. PMC 53506. PMID 2154750.
- Forse RA, Leibel R, Gagner M (Jan 1989). "The effect of Escherichia coli endotoxin on the adrenergic control of lipolysis in the human adipocyte". The Journal of Surgical Research 46 (1): 41–8. doi:10.1016/0022-4804(89)90180-7. PMID 2536864.
- Frielle T, Collins S, Daniel KW, Caron MG, Lefkowitz RJ, Kobilka BK (Nov 1987). "Cloning of the cDNA for the human beta 1-adrenergic receptor". Proceedings of the National Academy of Sciences of the United States of America 84 (22): 7920–4. doi:10.1073/pnas.84.22.7920. PMC 299447. PMID 2825170.
- Stiles GL, Strasser RH, Lavin TN, Jones LR, Caron MG, Lefkowitz RJ (Jul 1983). "The cardiac beta-adrenergic receptor. Structural similarities of beta 1 and beta 2 receptor subtypes demonstrated by photoaffinity labeling". The Journal of Biological Chemistry 258 (13): 8443–9. PMID 6305985.
- Hoehe MR, Otterud B, Hsieh WT, Martinez MM, Stauffer D, Holik J et al. (Jun 1995). "Genetic mapping of adrenergic receptor genes in humans". Journal of Molecular Medicine 73 (6): 299–306. doi:10.1007/BF00231616. PMID 7583452.
- Elies R, Ferrari I, Wallukat G, Lebesgue D, Chiale P, Elizari M et al. (Nov 1996). "Structural and functional analysis of the B cell epitopes recognized by anti-receptor autoantibodies in patients with Chagas' disease". Journal of Immunology 157 (9): 4203–11. PMID 8892658.
- Oldenhof J, Vickery R, Anafi M, Oak J, Ray A, Schoots O et al. (Nov 1998). "SH3 binding domains in the dopamine D4 receptor". Biochemistry 37 (45): 15726–36. doi:10.1021/bi981634. PMID 9843378.
- Mason DA, Moore JD, Green SA, Liggett SB (Apr 1999). "A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor". The Journal of Biological Chemistry 274 (18): 12670–4. doi:10.1074/jbc.274.18.12670. PMID 10212248.
- Moore JD, Mason DA, Green SA, Hsu J, Liggett SB (Sep 1999). "Racial differences in the frequencies of cardiac beta(1)-adrenergic receptor polymorphisms: analysis of c145A>G and c1165G>C". Human Mutation 14 (3): 271. doi:10.1002/(SICI)1098-1004(1999)14:3<271::AID-HUMU14>3.0.CO;2-Q. PMID 10477438.
- Tang Y, Hu LA, Miller WE, Ringstad N, Hall RA, Pitcher JA et al. (Oct 1999). "Identification of the endophilins (SH3p4/p8/p13) as novel binding partners for the beta1-adrenergic receptor". Proceedings of the National Academy of Sciences of the United States of America 96 (22): 12559–64. doi:10.1073/pnas.96.22.12559. PMC 22990. PMID 10535961.
- Podlowski S, Wenzel K, Luther HP, Müller J, Bramlage P, Baumann G et al. (2000). "Beta1-adrenoceptor gene variations: a role in idiopathic dilated cardiomyopathy?". Journal of Molecular Medicine 78 (2): 87–93. doi:10.1007/s001090000080. PMID 10794544.
- Shiina T, Kawasaki A, Nagao T, Kurose H (Sep 2000). "Interaction with beta-arrestin determines the difference in internalization behavor between beta1- and beta2-adrenergic receptors". The Journal of Biological Chemistry 275 (37): 29082–90. doi:10.1074/jbc.M909757199. PMID 10862778.
- Hu LA, Tang Y, Miller WE, Cong M, Lau AG, Lefkowitz RJ et al. (Dec 2000). "beta 1-adrenergic receptor association with PSD-95. Inhibition of receptor internalization and facilitation of beta 1-adrenergic receptor interaction with N-methyl-D-aspartate receptors". The Journal of Biological Chemistry 275 (49): 38659–66. doi:10.1074/jbc.M005938200. PMID 10995758.
- Börjesson M, Magnusson Y, Hjalmarson A, Andersson B (Nov 2000). "A novel polymorphism in the gene coding for the beta(1)-adrenergic receptor associated with survival in patients with heart failure". European Heart Journal 21 (22): 1853–8. doi:10.1053/euhj.1999.1994. PMID 11052857.
- Xu J, Paquet M, Lau AG, Wood JD, Ross CA, Hall RA (Nov 2001). "beta 1-adrenergic receptor association with the synaptic scaffolding protein membrane-associated guanylate kinase inverted-2 (MAGI-2). Differential regulation of receptor internalization by MAGI-2 and PSD-95". The Journal of Biological Chemistry 276 (44): 41310–7. doi:10.1074/jbc.M107480200. PMID 11526121.
- Hu LA, Chen W, Premont RT, Cong M, Lefkowitz RJ (Jan 2002). "G protein-coupled receptor kinase 5 regulates beta 1-adrenergic receptor association with PSD-95". The Journal of Biological Chemistry 277 (2): 1607–13. doi:10.1074/jbc.M107297200. PMID 11700307.
- Ranade K, Jorgenson E, Sheu WH, Pei D, Hsiung CA, Chiang FT et al. (Apr 2002). "A polymorphism in the beta1 adrenergic receptor is associated with resting heart rate". American Journal of Human Genetics 70 (4): 935–42. doi:10.1086/339621. PMC 379121. PMID 11854867.
UpToDate Contents
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
English Journal
- Inward rectifier K+ channel and T-type Ca2+ channel contribute to enhancement of GABAergic transmission induced by β1-adrenoceptor in the prefrontal cortex.
- Luo F1, Zheng J2, Sun X2, Tang H2.
- Experimental neurology.Exp Neurol.2017 Feb;288:51-61. doi: 10.1016/j.expneurol.2016.11.007. Epub 2016 Nov 11.
- The functions of prefrontal cortex (PFC) are sensitive to norepinephrine (NE). Endogenously released NE influences synaptic transmission through activation of different subtypes of adrenergic receptors in PFC including α1, α2, β1 or β2-adrenoceptor. Our recent study has revealed that β1-adrenoc
- PMID 27840071
- Ganglionic GFAP + glial Gq-GPCR signaling enhances heart functions in vivo.
- Xie AX1, Lee JJ1, McCarthy KD1.
- JCI insight.JCI Insight.2017 Jan 26;2(2):e90565. doi: 10.1172/jci.insight.90565.
- The sympathetic nervous system (SNS) accelerates heart rate, increases cardiac contractility, and constricts resistance vessels. The activity of SNS efferent nerves is generated by a complex neural network containing neurons and glia. Gq G protein-coupled receptor (Gq-GPCR) signaling in glial fibril
- PMID 28138563
- Structure-based Derivation of Peptide Inhibitors to Target TGF-β1 Receptor for the Suppression of Hypertrophic Scarring Fibroblast Activation.
- Hu H1, Yang S1, Zhang J1, Mao G1.
- Chemical biology & drug design.Chem Biol Drug Des.2017 Jan 25. doi: 10.1111/cbdd.12954. [Epub ahead of print]
- The intermolecular recognition and interaction between human transforming growth factor β-1 (TGF-β1) and its cognate receptor TβRII have been implicated in the pathological condition of hypertrophic scarring (HS). Here, we attempted to rationally derive peptide inhibitors from the complex interfa
- PMID 28122173
Japanese Journal
- Effects of 1-year administration of olmesartan on portal pressure and TGF-beta1 in selected patients with cirrhosis : a randomized controlled trial
- HIDAKA Hisashi,NAKAZAWA Takahide,SHIBUYA Akitaka,MINAMINO Tsutomu,TAKADA Juichi,TANAKA Yoshiaki,OKUWAKI Yusuke,WATANABE Masaaki,KOIZUMI Wasaburo
- Journal of gastroenterology 46(11), 1316-1323, 2011-11-01
- NAID 10030294951
- Radiation-induced ICAM-1 Expression via TGF-β1 Pathway on Human Umbilical Vein Endothelial Cells ; Comparison between X-ray and Carbon-ion Beam Irradiation
- KIYOHARA Hiroki,ISHIZAKI Yasuki,SUZUKI Yoshiyuki,KATOH Hiroyuki,HAMADA Nobuyuki,OHNO Tatsuya,TAKAHASHI Takeo,KOBAYASHI Yasuhiko,NAKANO Takashi
- Journal of radiation research 52(3), 287-292, 2011-05-16
- … Intercellular adhesion molecule-1 (ICAM-1) and transforming growth factor-beta1 (TGF-β1) are thought to play important roles in this process. … In this study, radiation-induced ICAM-1 expression on endothelial cells was investigated with the use of an inhibitor of TGF-β1 receptor kinase (SB431542) and the effects of X-ray and carbon-ion beam were compared. …
- NAID 10028111131
Related Links
- Beta adrenergic receptors location and effects highlighted in pharmacology charts. Activation of Beta receptors 1, 2 and 3 is also explored in this article. ... Beta receptors are a subtype of adrenergic receptor (adrenoceptor), their ...
- beta-1 Adrenergic Receptor Polyclonal Antibody from Invitrogen for Western Blot, Immunofluorescence and Immunocytochemistry applications. This antibody reacts with Human, Mouse, Non-human primate, Rat samples. Supplied as ...
★リンクテーブル★
[★]
- 英
- beta-1 receptor
- 関
- β1レセプター、アドレナリン受容体
[★]
- 英
- beta-1 receptor
- 関
- β1受容体
[★]
- 関
- beta-1 adrenergic receptor
[★]
β、ベータ
[★]