出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2013/07/21 01:37:49」(JST)
核磁気共鳴(かくじききょうめい、NMR、Nuclear Magnetic Resonance) は外部静磁場に置かれた原子核が固有の周波数の電磁波と相互作用する現象である。
目次
|
原子番号と質量数がともに偶数でない原子核は0でない核スピン量子数 I と磁気双極子モーメントを持ち、その原子は小さな磁石と見なすことができる。磁石に対して磁場をかけると磁石は磁場ベクトルの周りを一定の周波数で歳差運動する。原子核も同様に磁気双極子モーメントが歳差運動を行なう。この原子核の磁気双極子モーメントの歳差運動の周波数はラーモア周波数 (Larmor frequency) と呼ばれる。この原子核に対してラーモア周波数と同じ周波数で回転する回転磁場をかけると磁場と原子核の間に共鳴が起こる。この共鳴現象が核磁気共鳴(Nuclear Magnetic Resonance、略してNMR)と呼ばれる。
磁場中に置かれた原子核はゼーマン効果によって磁場の強度に比例する、一定のエネルギー差を持った 2I + 1 個のエネルギー状態をとる。このエネルギー差はちょうど周波数がラーモア周波数の光子の持つエネルギーと一致する。そのため、共鳴時において電磁波の吸収あるいは放出が起こり、これにより共鳴現象を検知することができる。
MRI についての歴史は核磁気共鳴画像法(MRI)の項を参照のこと。
NMRの理論的な説明には、古典的なベクトルモデルによるものと、量子(統計)力学によるものがある。量子統計力学による説明のほうが扱える範囲は広い。たとえば2次元NMRなどは量子的なコヒーレンスがあるために量子力学によるものでないと扱えない。
詳細は「ブロッホ方程式」を参照
フェリックス・ブロッホは現象論的な考察から、原子核が磁場中で作り出す磁化ベクトルの時間変化を以下の式で表現した。熱平衡状態の磁化の方向をz軸にとり、観測対象の原子核の磁気回転比をγ、かけられている磁場を、時間tの磁化を、熱平衡状態の磁化をとすると、
ここで下付き文字x,y,zはベクトルのx成分、y成分、z成分を表す。T1はz軸方向の磁化(縦磁化)の緩和(縦緩和)の時定数、T2はxy平面内の磁化(横磁化)の緩和(横緩和)の時定数である。これをブロッホの方程式という。
静磁場B0の元でこの方程式を解くと、磁化のxy平面内の成分は周波数γB0で歳差運動を行なうことがわかる。この周波数はラーモア周波数そのものである。
次にラーモア周波数と同じ周波数で回転している回転座標系からの観測について考える。この回転系ではラーモア周波数で回転する磁化ベクトルは静止して見える。つまり回転系ではラーモア歳差の原因となっている磁場B0が存在しないかのように見える。回転系で熱平衡状態の磁化ベクトルに対し、xy平面内で回転する磁場をかけることを考える。周波数がラーモア周波数以外の回転磁場をかけたとき、回転系から見ると回転磁場はラーモア周波数との差の周波数で回転しているように見える。この場合、ある方向に磁場がかかる場合とそれと逆方向に磁場がかかる機会は等しく存在する。これらの反対向きの磁場による磁化ベクトルの運動はおおよそ相殺されるため、磁化ベクトルは熱平衡状態のままほとんど変化しない。すなわち共鳴は起こらないことになる。一方、ラーモア周波数の回転磁場をかけたときには、回転系から見ると回転磁場はある軸(ここでは仮にx軸とする)上に静止して見える。このとき磁化ベクトルは回転系から見るとyz平面内を回転運動するように見える。磁化ベクトルがz軸上からどの程度回転するかは、回転磁場の強度およびその継続時間による。磁化ベクトルをz軸からn度回転させるような回転磁場はn度パルスと呼ばれる。磁化ベクトルがz軸から回転することによって生じた磁化のxy成分は慣性系から見ればラーモア周波数で歳差運動する。この歳差運動はコイルで誘導電流として検知することができる。これはFT-NMRの基本的な原理である。
なお実際のNMRの観測においては回転磁場の代わりに同じ周波数の振動磁場を用いる。振動磁場は逆方向に回転する2つの回転磁場の和と考えられ、核磁気共鳴を引き起こす回転磁場と逆方向に回転している磁場は共鳴にほとんど影響しないからである。
詳細は「密度行列」を参照
NMRの観測は磁化ベクトルの変化を検出することによって行なう。磁化ベクトルは試料内の個々の核スピンから生じる磁気双極子モーメントの総和である。よってNMRは理論的には核スピンの集団の磁場に対する応答として記述される。このような集団の状態は量子力学では密度演算子によって記述される。
密度演算子の時間発展を表す方程式はリウビル-フォン・ノイマン方程式である。この方程式には注目しているスピン系とその周囲の環境(格子と呼ばれる)全体を記述する密度演算子が含まれている。しかし、通常NMRの挙動を解析するためには注目しているスピン系の情報さえ分かれば充分である。そこで次のような、スピン系のみの簡約化された密度演算子に対する変形したリウビル-フォン・ノイマン方程式が用いられる。(なお、ここでは式はNMR分野での慣用に従い、ディラック定数を省略してエネルギーを角周波数単位で表す方法を用いている。)
ここで、ρはスピン系の密度演算子、Hはスピン系のハミルトニアン、Γは緩和を表す演算子、ρ0は熱平衡状態のスピン系の密度演算子である。スピンのx成分、y成分、z成分の統計的期待値はIx, Iy, Izをそれぞれスピンのx成分、y成分、z成分の演算子とすると、それぞれρ⋅Ix、ρ⋅Iy、ρ⋅Izの行列表現のトレースに等しい。
スピンにより生じる磁気双極子モーメントはスピンの期待値ベクトルとγ(h/2π)の積となる。さらに磁化ベクトルは磁気双極子モーメントと系内の核スピンの個数の積となる。
相互作用ハミルトニアンの具体的な形は、周囲に何も存在しない裸の核スピンがただ1つ存在する場合はゼーマン相互作用のみなので以下のように書ける。
ここでIは核スピン演算子である。
実際には周囲の電子や他のスピンとの相互作用の結果、相互作用ハミルトニアンにはさらに化学シフト項、スピン結合項、磁気双極子相互作用項、核四極子相互作用項などが付け加わる。以下にそれらの原因となる相互作用を示す。
原子核の周りには通常は電子が運動している。運動している電子は磁場を作り出すため、これにより原子核のラーモア周波数は影響を受ける。原子核の周りの電子の状態はその原子がどのような化学結合をしているのかに影響を受ける。そのため、その原子が構成している物質の違いによってラーモア周波数も異なる。この物質によるラーモア周波数の違いを化学シフト(ケミカルシフト)という。 ハミルトニアンの化学シフト項は以下のように表せる。
ここで、σは化学シフトテンソルあるいは遮蔽テンソルと呼ばれる。このときのラーモア周波数は以下のようになる。
ここでσxx、σyy、σzzは化学シフトテンソルの主値、αx、αy、αzは主軸から見た静磁場B0の方向余弦である。
観測している原子核が充分に速く等方的に運動している場合には、化学シフトテンソルは平均化されてスカラーσで表すことができる。これを遮蔽定数という。このときのラーモア周波数は以下のようになる。
いずれの場合もラーモア周波数は静磁場B0に比例する。化学シフトの値を議論する場合には、この磁場依存性をなくすためにラーモア周波数をγB0で割った無次元数を利用することが多い。
遮蔽定数は反磁性項と常磁性項の和で表される。反磁性項は電子のローレンツ力による回転運動により磁場が打ち消される(遮蔽)効果である。例えばs軌道の電子は磁場が存在しない状態では軌道角運動量が0である。しかし、ここに磁場をかけるとローレンツ力により軌道角運動量を持つようになる。この新たに生じた軌道角運動量により作り出される磁場が遮蔽をもたらす。 一方、常磁性項は磁場がかかったことによって電子の軌道が歪み、励起状態が混合することによって生じる項である。例えば電子のpx軌道は軌道角運動量l=±1の軌道が混合して作られている。磁場が無い場合にはこの2つの軌道は縮退しているために混合比も1:1であり結果としてpx軌道の軌道角運動量はクエンチされており0である。しかし磁場がかかると軌道の縮退が破れる。このとき、より安定化されるのは原子核の位置にかけられた磁場と同じ向きに磁場を生じるような軌道角運動量を持つ方の軌道である。軌道の混合比もより安定な軌道の寄与が大きくなるため、磁場を強める効果(脱遮蔽)をもたらす。 荒い近似では反磁性項は核からの電子の平均距離に反比例し、常磁性項は基底状態と混合する励起状態とのエネルギーに反比例し、電子の平均距離の3乗に反比例する。おおまかには原子番号が大きいほど基底状態と励起状態のエネルギー差が小さいため、常磁性項の寄与が大きくなる。また、電子の平均距離は周期表の同じ周期に属する元素では原子番号が大きいものほど核電荷の増加により、小さくなり、やはり常磁性項の寄与が大きくなる。一般に反磁性項よりも常磁性項の大きさが上回り、常磁性項の寄与が大きくなるほど化学シフトの範囲も広くなる。プロトンでは化学シフトは高々20ppmの範囲に収まるが、鉛のような重原子では9000ppm程度まで大きくなる。
プロトンでは、原子核の周囲を回転する電子が1つしかないため、反磁性項、常磁性項いずれの値も小さい。その結果、離れた場所に存在する電子の作り出す磁場が化学シフトに大きな影響を与える。特に分子内の電子が回転運動しやすい状態になっている場合、化学シフトが大きく変化する。代表的な例が芳香環を含む化合物のプロトンの化学シフトである。芳香環では環状にπ電子が非局在化しているため、電子の回転運動が容易な状態となっている。そのため、芳香族化合物に磁場をかけると環に沿って電子が回転運動する環電流が誘起される。環電流は環の平面内には大きな脱遮蔽効果を、環の鉛直方向には大きな遮蔽効果を生じる。また、溶媒の種類への化学シフトの依存性もプロトンが特に大きい。
詳細は「J結合」を参照
スピン結合(スピンカップリング)は2つの核スピンI,Sが相互作用する結果、それぞれのラーモア周波数が相手の核スピン量子数に応じて変化する現象である。ハミルトニアンのスピン結合項は以下のように表される。
この式のIとSはそれぞれの核のスピン演算子であり、J はスピン結合テンソルと呼ばれる。化学シフトテンソルと同じく観測している原子核が充分に速く等方的に運動しているときにはスカラー J で表すことができる。この J は周波数の次元を持ち、結合定数(カップリング定数)と呼ばれる。スピン結合は一般的に J で表されることからJ結合、またスカラーで表せることからスカラー結合と呼ばれる場合もある。
あるスピンIが、スピン量子数のz方向成分mzのスピンSと結合定数 J で結合しており、そのラーモア周波数の差が J よりもずっと大きい(弱いスピン結合)場合、スピンIのラーモア周波数は mzJ だけ変化する。スピンSのスピン量子数をmとすると、スピン量子数のz方向成分は-m, -m+1, …, m-1, mの2m+1個の値をとりうる。そのため、NMRにおいては J ずつ異なる2m+1個のラーモア周波数での共鳴が観測されることになる。スピンIが複数のスピンS1、スピンS2と結合していれば、スピンS1によって分裂した共鳴線がさらにスピンS2によって分裂することになる。スピンS1、スピンS2に対する J の値が等しい場合には、分裂した共鳴線が重なりあうため、周波数順に1:2:…:2m+1:…:2:1という特徴のある共鳴線の強度のパターンが現れる。ラーモア周波数の差が J と同程度である(強いスピン結合)場合、共鳴線の分裂は複雑になる場合が多い。また、ラーモア周波数の差がない場合、スピン結合自体は存在しても共鳴線の分裂は起こらない。
スピン結合は核スピン同士の直接の磁気的な相互作用によるものではない。磁気双極子相互作用によるスペクトルへの影響は原子が等方的な運動を行なっている場合には消失してしまうが、スピン結合はそうならない。スピン結合は結合電子を媒介にしたスピン同士の相互作用に起因する。媒介は電子のスピン角運動量か軌道角運動量を通じて行なわれる。原子I、原子S間の化学結合を構成する電子のスピン波動関数はα(I)β(S) - β(I)α(S)のように2つの状態の混合で表される。このとき原子Iおよび原子Sにαの電子がある確率と、βの電子がある確率は等しい。そのため、それぞれのスピンI,Sに及ぼされる電子スピンによる正味の磁場は0である。ここで原子Iにスピンがあることを考慮に入れる。もしIが同じ向きのスピンを持つ電子がIにある方が安定化するならば、Iがαの場合には波動関数のα(I)β(S)の項の比率が増加し、β(I)α(S)の項の比率が減少する。こうすると原子Sにはβスピンが存在する確率が増加する。その結果、原子Iにはαスピンの電子が作りだす磁場が、原子Sにはβスピンの電子が作り出す磁場が生じることになる。逆にIがβの場合には原子Iにはβスピンの電子が作りだす磁場が、原子Sにはαスピンの電子が作り出す磁場が生じる。この結果、それぞれ原子Iと原子Sには2種類のラーモア周波数を持つものができることになる。
核スピンと電子スピンの間の相互作用には二種類がある。一つは磁気双極子相互作用によるものである。もう一つはフェルミの接触相互作用と呼ばれる機構である。フェルミの接触相互作用の大きさは原子核の位置での電子の存在確率に比例する。原子核の位置で波動関数が0でないのはs軌道だけである。そのため結合電子のs電子性が高い場合、特にプロトンについて重要な機構である。核スピンと電子の軌道角運動量の間にも化学シフトの常磁性項と同じような機構での相互作用が考えられ、スピン結合の原因となる。これはs電子以外の電子で重要な機構である。このモデルから分かるとおり、スピン結合には外部磁場の存在は関係ない。ハミルトニアンに静磁場 B0 が含まれていないのもこのためである。よってスピン結合による分裂幅は静磁場の強度には依存しない。そのため化学シフトとは異なり、スピン結合の値を議論する場合には周波数の観測値をそのまま用いる。
結合定数 J の符号はラーモア周波数の測定からは知ることができないが、緩和現象などを利用して測定がされている。H-NMR においては、ほとんどの場合ジェミナル水素の結合は正、ビシナル水素の結合は負の値を持つことが知られている。
詳細は「磁気双極子相互作用」を参照
磁気双極子相互作用 は2つの核スピンI,Sが直接磁気双極子として相互作用するものである。磁気双極子相互作用のハミルトニアンは以下のように表される。
ここでμ0 は真空の透磁率、r はスピンIとSの間を結ぶベクトル、D は磁気双極子相互作用テンソルである。この相互作用の大きさは化学シフトやスピン結合に比べてはるかに大きい。しかし、磁気双極子相互作用テンソルのトレースは0であるので、この相互作用は観測している原子核が充分に速く等方的に運動しているときには平均化されてラーモア周波数への影響は0となる。一方、固体の通常測定においてはその相互作用の大きさからスペクトルの形を支配する。磁気双極子相互作用による共鳴線の分裂幅はベクトルrと静磁場のなす角度θに対して、3cos2θ-1;に比例する。そのため、角度θの平均値を測定の間3cos2θ-1=0と保つようにすれば固体の測定でも磁気双極子相互作用による分裂を消去できる。これがマジックアングルスピニング法 (MAS法) である。
一方、磁気双極子相互作用はほとんどの場合に緩和の機構として主要なものである。
核四極子相互作用 は1以上の核スピン量子数を持つ原子核に存在する相互作用である。
実際の原子核は点ではなく空間的な拡がりを持ち、しかもその電荷の拡がりは常に球対称とは限らない。よって1以上の核スピン量子数を持つ原子核は電気四極子モーメントを持つ。電気四極子モーメントを持つ核が、電場勾配のある環境に置かれている場合、核の向きによってエネルギーが変わるため、エネルギーの分裂が起こる。核四極子相互作用とは、原子核を取り巻く電子が作る電場と、球対称ではない原子核との静電相互作用のうち、核の向きによって変化する部分のことである。
NMRと同様に共鳴吸収現象を観測することができ、これは核四極子共鳴 (Nuclear Quadrupole Resonance, NQR) と呼ばれる。
核四極子相互作用のハミルトニアンは以下のように表される。
ここでe は電気素量、q は核四極子モーメント、V は電場勾配テンソル、Q は核四極子相互作用テンソルである。 核四極子相互作用テンソルのトレースは0であるので、この相互作用は観測している原子核が充分に速く等方的に運動しているときには平均化されてラーモア周波数への影響は0となる。従ってNQRの観測も固体中に限定される。
核四極子相互作用の大きさは、対称性のない物質(=物質内の電場勾配が大きい)では他の相互作用よりも圧倒的に大きい。そのため四極子モーメントを持つ核では、その緩和はほとんど核四極子相互作用に支配される。
xy面内に観測可能なマクロの大きさの磁化ベクトルが生じるのは、核スピンの波動関数がα + βのように複数のスピン状態が混合している形で表され、かつ核スピンの集合全体が同じスピン状態を持っている(個々の核スピンの波動関数がコヒーレントな状態である)場合に限られる。核スピンの波動関数のこのような状態をコヒーレンスという。 コヒーレンスがあることとxy面内に磁化ベクトルが存在することは等価ではない。例えば2つのスピンを含む系において波動関数がαα + ββというような状態でコヒーレントになっている場合、xy面内に磁化ベクトルは存在しない。xy面内に磁化ベクトルが生じるのは全スピン量子数が1だけことなる状態のコヒーレンス(一量子コヒーレンス)のみである。αα + ββのような二量子コヒーレンスやαβ + βαのようなゼロ量子コヒーレンスは磁化ベクトルを生じない。熱平衡状態にあるスピン系に単一の回転磁場パルスを与えると、まず一量子コヒーレンスが生じる。この後、適切なタイミングで適切なパルスを与えることで二量子コヒーレンスやゼロ量子コヒーレンスを生じさせることができる。
一量子コヒーレンス以外のコヒーレンスは直接観測することはできないが、適切なタイミングで適切なパルスを与えることによって一量子コヒーレンスに変換することができ、この一量子コヒーレンスの磁化ベクトルとして間接的に検出することができる。特定の相互作用を持つスピン系のみを観測しようとする測定手法は、特定のコヒーレンスを経由して発生した磁化ベクトルのみを観測するようにしている。このようなコヒーレンスの選別には磁場勾配パルスや位相サイクルといった手法が利用される。
NMRにおける緩和とは電磁波を受けることによって励起された核がエネルギーを放出して基底状態に戻ること、あるいは核スピンのコヒーレンスが消失することである。緩和の原因となるのは周囲の電子や原子核の持つ磁気双極子モーメントや電気四極子モーメントである。これらから受ける磁場が分子のブラウン運動や結合の回転によって変化する。この不規則な磁場の変動の中のエネルギー準位の差に相当する周波数成分によって状態間の遷移が起こり、緩和が起こる。
複数回の積算を行う場合には、緩和にかかる時間に注意が必要である。スピンが熱平衡状態に復帰していない状態で次の積算の測定が行なわれると、測定される磁化の強度が低下する。しかし、十分に緩和するのを待つよりも積算回数を稼ぐ方がS/N比の改善に効果的なこともある。またコヒーレンスが完全に消失していない場合、パルスの干渉が起こってスペクトルにノイズを生じさせる場合もある。
核自身の持つ電気四極子モーメントは緩和を著しく加速させる。スピン1/2の核は電気四極子モーメントを持たず緩和速度が小さいため、測定に長い時間が必要である。一方、緩和する前にさらにスピンを操作することができるため、これらの核に対しては様々な測定法が開発されている。そのため、核スピン1/2の1H, 13C, 15N, 19F, 29Si, 31P といった核がNMRの測定の中心を占めている。逆に核スピン1以上の核は、一部の核を除けば緩和速度が著しく大きいため、時間とエネルギーの間の不確定性原理によりエネルギー準位に幅ができる。すなわちラーモア周波数に幅があるのでシグナルがブロードとなり分解能が低くなる。
詳細は「スピン-格子緩和」を参照
縦緩和はスピン-格子緩和とも言い、磁化ベクトルのz成分(縦磁化)が熱平衡状態の値に復帰する緩和である。電磁波を照射することでエネルギーの高い準位に励起されたスピンが格子にエネルギーを放出しながらエネルギーの低い準位に戻る機構で起こる。この過程はランダム磁場の中のx成分やy成分のラーモア周波数と一致する成分を拾って起こる。縦緩和の時定数は T1 で表される。
詳細は「スピン-スピン緩和」を参照
横緩和はスピン-スピン緩和とも言い、磁化ベクトルのx, y成分(横磁化)が0に復帰する緩和である。この過程には2種類の機構が存在する。1つはスピンの位相がそろった状態から位相がバラバラの状態になる機構である。この過程はランダム磁場のz成分によって各スピンのラーモア周波数が揺らぐことで起こる。もう1つは準位間の遷移によって横磁化が失われる機構である。この過程は縦緩和と同じくランダム磁場の中のx成分やy成分のラーモア周波数と一致する成分を拾って起こる。横緩和の時定数は T2 で表される。 エントロピー的な要請から、T1 ≧ T2 となる。
磁気双極子相互作用を持つ2つのスピンI,Sには2つのスピン量子数を同時に変化させるような緩和過程が存在する。このような過程を交差緩和という。交差緩和が起こるとエネルギー準位の占有数差が熱平衡状態よりも大きくなることがある。これが核オーバーハウザー効果である。
詳細は「二次元NMR」を参照
NMRにおいては磁場パルスによってコヒーレンスを生成した後、さらに磁場パルスを当てることによりコヒーレンスをその核と相互作用のある核に移動させることができる。このことを利用してある原子と別の原子の間の相関を調べるのが二次元NMR分光法である。
二次元NMR においては測定したい相関に応じて、複数のパルスがある決められた順序、時間間隔で当てられる。この順序、時間間隔をパルスシークエンスと呼ぶ。どのパルスシークエンスも大体、準備期-展開期-混合期-検出期の4つの部分からなる。
展開期の時間の長さ(普通 t1 で表す)を変えていくと、検出期のFIDの強度が第1の核のラーモア周波数で振動する。FID をフーリエ変換した後の第2の核のシグナルの強度も第1の核のラーモア周波数で振動していることになる。そのため、第2の核のシグナルの強度をフーリエ変換すると、第1の核のラーモア周波数を取り出すことができる。これにより相互作用している2つの核の情報を取り出すのが2次元NMRである。
詳細は「核磁気共鳴分光法」を参照
被観測原子のラーモア周波数は同位体種と外部静磁場の強さでほぼ決まるが、同一同位体種の原子核でも試料中での各原子の磁気的環境によってわずかに異なり、そこから分子構造などについての情報が得られる。ひとつのNMRスペクトルで観測される周波数範囲は比較的狭く、一種類の同位体原子だけの試料中での状態を反映したものになる。つまりNMRは同位体種に選択的な測定法である。
分光法なので得られるデータは横軸が周波数で縦軸が強度のスペクトルとなる。しかし、ある原子の共鳴周波数は外部静磁場の強さに比例して変わり、その被観測原子固有の性質とはならない。だが、
(被観測原子のラーモア周波数 − 基準周波数)/(磁気回転比 × 外部静磁場強度)
で定義される化学シフトは被観測原子固有の値となるので、NMRスペクトルの横軸は化学シフトで表すのが一般的である。共鳴位置に現れるピークのことを単にピーク (peak) またはシグナル、信号 (signal) と呼ぶ。
主に対象となる原子は水素または炭素(通常の 12C ではなく核スピンを有する同位体 13C(カーボン・サーティーン)を測定する)であり、これらについては膨大な資料が存在する。水素原子を対象とするものを 1H NMR(プロトンNMR)、炭素原子を対象とするものを 13C NMR(カーボン・サーティーンNMR)と呼ぶ。他にそれ以外の元素についても核スピンを持ちさえすれば原理的には測定可能であり、現代の有機化学では最も多用される分析手法の一つである。有機化合物の同定や構造決定に極めて有用である。また、単結晶X線回折と並んで構造生物学のための強力な武器である。測定する核種の磁気回転比や天然存在比、電気四極子モーメント等の違いで感度や線幅が異なる。
詳細は「フーリエ変換NMR」を参照
ウィキメディア・コモンズには、核磁気共鳴に関連するカテゴリがあります。 |
Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a magnetic field absorb and re-emit electromagnetic radiation. This energy is at a specific resonance frequency which depends on the strength of the magnetic field and the magnetic properties of the isotope of the atoms; in practical applications, the frequency is similar to VHF and UHF television broadcasts (60–1000 MHz). NMR allows the observation of specific quantum mechanical magnetic properties of the atomic nucleus. Many scientific techniques exploit NMR phenomena to study molecular physics, crystals, and non-crystalline materials through NMR spectroscopy. NMR is also routinely used in advanced medical imaging techniques, such as in magnetic resonance imaging (MRI).
All isotopes that contain an odd number of protons and/or of neutrons (see Isotope) have an intrinsic magnetic moment and angular momentum, in other words a nonzero spin, while all nuclides with even numbers of both have a total spin of zero. The most commonly studied nuclei are 1H and 13C, although nuclei from isotopes of many other elements (e.g. 2H, 6Li, 10B, 11B, 14N, 15N, 17O, 19F, 23Na, 29Si, 31P, 35Cl, 113Cd, 129Xe, 195Pt) have been studied by high-field NMR spectroscopy as well.
A key feature of NMR is that the resonance frequency of a particular substance is directly proportional to the strength of the applied magnetic field. It is this feature that is exploited in imaging techniques; if a sample is placed in a non-uniform magnetic field then the resonance frequencies of the sample's nuclei depend on where in the field they are located. Since the resolution of the imaging technique depends on the magnitude of magnetic field gradient, many efforts are made to develop increased field strength, often using superconductors. The effectiveness of NMR can also be improved using hyperpolarization, and/or using two-dimensional, three-dimensional and higher-dimensional multi-frequency techniques.
The principle of NMR usually involves two sequential steps:
The two fields are usually chosen to be perpendicular to each other as this maximizes the NMR signal strength. The resulting response by the total magnetization (M) of the nuclear spins is the phenomenon that is exploited in NMR spectroscopy and magnetic resonance imaging. Both use intense applied magnetic fields (H0) in order to achieve dispersion and very high stability to deliver spectral resolution, the details of which are described by chemical shifts, the Zeeman effect, and Knight shifts (in metals).
NMR phenomena are also utilized in low-field NMR, NMR spectroscopy and MRI in the Earth's magnetic field (referred to as Earth's field NMR), and in several types of magnetometers.
Contents
|
Nuclear magnetic resonance was first described and measured in molecular beams by Isidor Rabi in 1938,[1] and in 1944, Rabi was awarded the Nobel Prize in physics for this work.[2] In 1946, Felix Bloch and Edward Mills Purcell expanded the technique for use on liquids and solids, for which they shared the Nobel Prize in Physics in 1952.[3][4]
Purcell had worked on the development of radar during World War II at the Massachusetts Institute of Technology's Radiation Laboratory. His work during that project on the production and detection of radio frequency power and on the absorption of such RF power by matter laid the background for Rabi's discovery of NMR.
Rabi, Bloch, and Purcell noticed that magnetic nuclei, like 1H and 31P, could absorb RF energy when placed in a magnetic field and when the RF was of a frequency specific to the identity of the nuclei. When this absorption occurs, the nucleus is described as being in resonance. Different atomic nuclei within a molecule resonate at different (radio) frequencies for the same magnetic field strength. The observation of such magnetic resonance frequencies of the nuclei present in a molecule allows any trained user to discover essential, chemical and structural information about the molecule.
The development of NMR as a technique in analytical chemistry and biochemistry parallels the development of electromagnetic technology and advanced electronics and their introduction into civilian use.
All nucleons, that is neutrons and protons, composing any atomic nucleus, have the intrinsic quantum property of spin. The overall spin of the nucleus is determined by the spin quantum number S. If the number of both the protons and neutrons in a given nuclide are even then S = 0, i.e. there is no overall spin. Then, just as electrons pair up in atomic orbitals, so do even numbers of protons or even numbers of neutrons (which are also spin-1⁄2 particles and hence fermions) pair up giving zero overall spin.
However, a proton and neutron will have lower energy when their spins are parallel, not anti-parallel, since this parallel spin alignment does not infringe upon the Pauli Exclusion Principle, but instead it has to do with the quark structure of these two nucleons. Therefore, the spin ground state for the deuteron (the deuterium nucleus, or the 2H isotope of hydrogen)—that has only a proton and a neutron—corresponds to a spin value of 1, not of zero. The single, isolated deuteron therefore exhibits an NMR absorption spectrum characteristic of a quadrupolar nucleus of spin 1, which in the "rigid" state at very low temperatures is a characteristic ('Pake') doublet, (not a singlet as for a single, isolated 1H, or any other isolated fermion or dipolar nucleus of spin 1/2). On the other hand, because of the Pauli Exclusion Principle, the tritium isotope of hydrogen must have a pair of anti-parallel spin neutrons (of total spin zero for the neutron-spin pair), plus a proton of spin 1/2. Therefore, the character of the tritium nucleus is again magnetic dipolar, not quadrupolar—like its non-radioactive deuteron neighbor—and the tritium nucleus total spin value is again 1/2, just like for the simpler, abundant hydrogen isotope, 1H nucleus (the proton). The NMR absorption (radio) frequency for tritium is however slightly higher than that of 1H because the tritium nucleus has a slightly higher gyromagnetic ratio than 1H. In many other cases of non-radioactive nuclei, the overall spin is also non-zero. For example, the 27Al nucleus has an overall spin value S = 5⁄2.
A non-zero spin is thus always associated with a non-zero magnetic moment (μ) via the relation μ = γS, where γ is the gyromagnetic ratio. It is this magnetic moment that allows the observation of NMR absorption spectra caused by transitions between nuclear spin levels. Most nuclides (with some rare exceptions) that have both even numbers of protons and even numbers of neutrons, also have zero nuclear magnetic moments, and they also have zero magnetic dipole and quadrupole moments. Hence, such nuclides do not exhibit any NMR absorption spectra. Thus, 18O is an example of a nuclide that has no NMR absorption, whereas 13C, 31P, 35Cl and 37Cl are nuclides that do exhibit NMR absorption spectra. The last two nuclei are quadrupolar nuclei whereas the preceding two nuclei (13C and 31P) are dipolar ones.
Electron spin resonance (ESR) is a related technique in which transitions between electronic spin levels are detected rather than nuclear ones. The basic principles are similar but the instrumentation, data analysis, and detailed theory are significantly different. Moreover, there is a much smaller number of molecules and materials with unpaired electron spins that exhibit ESR (or electron paramagnetic resonance (EPR)) absorption than those that have NMR absorption spectra. ESR has much higher sensitivity than NMR does.
The angular momentum associated with nuclear spin is quantized. This means both that the magnitude of angular momentum is quantized (i.e. S can only take on a restricted range of values), and also that the orientation of the associated angular momentum is quantized. The associated quantum number is known as the magnetic quantum number, m, and can take values from +S to −S, in integer steps. Hence for any given nucleus, there are a total of 2S + 1 angular momentum states.
The z-component of the angular momentum vector (S) is therefore Sz = mħ, where ħ is the reduced Planck constant. The z-component of the magnetic moment is simply:
Consider nuclei which have a spin of one-half, like 1H, 13C or 19F. The nucleus has two possible spin states: m = 1⁄2 or m = −1⁄2 (also referred to as spin-up and spin-down, or sometimes α and β spin states, respectively). These states are degenerate, that is they have the same energy. Hence the number of atoms in these two states will be approximately equal at thermal equilibrium.
If a nucleus is placed in a magnetic field, however, the interaction between the nuclear magnetic moment and the external magnetic field mean the two states no longer have the same energy. The energy of a magnetic moment μ when in a magnetic field B0 is given by:
Usually the z axis is chosen to be along B0, and the above expression reduces to:
or alternatively:
As a result the different nuclear spin states have different energies in a non-zero magnetic field. In less formal language, we can talk about the two spin states of a spin 1⁄2 as being aligned either with or against the magnetic field. If γ is positive (true for most isotopes) then m = 1⁄2 is the lower energy state.
The energy difference between the two states is:
and this difference results in a small population bias toward the lower energy state.
Resonant absorption by nuclear spins will occur only when electromagnetic radiation of the correct frequency (e.g., equaling the Larmor precession rate) is being applied to match the energy difference between the nuclear spin levels in a constant magnetic field of the appropriate strength. The energy of an absorbed photon is then E = hν0, where ν0 is the resonance radiofrequency that has to match (that is, it has to be equal to the Larmor precession frequency νL of the nuclear magnetization in the constant magnetic field B0). Hence, a magnetic resonance absorption will only occur when ΔE = hν0, which is when ν0 = γB0/(2π). Such magnetic resonance frequencies typically correspond to the radio frequency (or RF) range of the electromagnetic spectrum for magnetic fields up to roughly 20 T. It is this magnetic resonant absorption which is detected in NMR.[citation needed]
It might appear from the above that all nuclei of the same nuclide (and hence the same γ) would resonate at the same frequency. This is not the case. The most important perturbation of the NMR frequency for applications of NMR is the "shielding" effect of the surrounding shells of electrons.[5] Electrons, similar to the nucleus, are also charged and rotate with a spin to produce a magnetic field opposite to the magnetic field produced by the nucleus. In general, this electronic shielding reduces the magnetic field at the nucleus (which is what determines the NMR frequency).
As a result the energy gap is reduced, and the frequency required to achieve resonance is also reduced. This shift in the NMR frequency due to the electronic molecular orbital coupling to the external magnetic field is called chemical shift, and it explains why NMR is able to probe the chemical structure of molecules, which depends on the electron density distribution in the corresponding molecular orbitals. If a nucleus in a specific chemical group is shielded to a higher degree by a higher electron density of its surrounding molecular orbital, then its NMR frequency will be shifted "upfield" (that is, a lower chemical shift), whereas if it is less shielded by such surrounding electron density, then its NMR frequency will be shifted "downfield" (that is, a higher chemical shift).
Unless the local symmetry of such molecular orbitals is very high (leading to "isotropic" shift), the shielding effect will depend on the orientation of the molecule with respect to the external field (B0). In solid-state NMR spectroscopy, magic angle spinning is required to average out this orientation dependence in order to obtain values close to the average chemical shifts. This is unnecessary in conventional NMR investigations of molecules, since rapid "molecular tumbling" averages out the chemical shift anisotropy (CSA). In this case, the term "average" chemical shift (ACS) is used.
The process called population relaxation refers to nuclei that return to the thermodynamic state in the magnet. This process is also called T1, "spin-lattice" or "longitudinal magnetic" relaxation, where T1 refers to the mean time for an individual nucleus to return to its thermal equilibrium state of the spins. Once the nuclear spin population is relaxed, it can be probed again, since it is in the initial, equilibrium (mixed) state.
The precessing nuclei can also fall out of alignment with each other (returning the net magnetization vector to a non-precessing field) and stop producing a signal. This is called T2 or transverse relaxation. Because of the difference in the actual relaxation mechanisms involved (for example, inter-molecular vs. intra-molecular magnetic dipole-dipole interactions ), T1 is usually (except in rare cases) longer than T2 (that is, slower spin-lattice relaxation, for example because of smaller dipole-dipole interaction effects). In practice, the value of which is the actually observed decay time of the observed NMR signal, or free induction decay, (to 1/e of the initial amplitude immediately after the resonant RF pulse)-- also depends on the static magnetic field inhomogeneity, which is quite significant. (There is also a smaller but significant contribution to the observed FID shortening from the RF inhomogeneity of the resonant pulse). In the corresponding FT-NMR spectrum—meaning the Fourier transform of the free induction decay—the time is inversely related to the width of the NMR signal in frequency units. Thus, a nucleus with a long T2 relaxation time gives rise to a very sharp NMR peak in the FT-NMR spectrum for a very homogeneous ("well-shimmed") static magnetic field, whereas nuclei with shorter T2 values give rise to broad FT-NMR peaks even when the magnet is shimmed well. Both T1 and T2 depend on the rate of molecular motions as well as the gyromagnetic ratios of both the resonating and their strongly interacting, next-neighbor nuclei that are not at resonance.
A Hahn echo decay experiment can be used to measure the dephasing time, as shown in the animation below. The size of the echo is recorded for different spacings of the two pulses. This reveals the decoherence which is not refocused by the pulse. In simple cases, an exponential decay is measured which is described by the time.
NMR spectroscopy is one of the principal techniques used to obtain physical, chemical, electronic and structural information about molecules due to either the chemical shift, Zeeman effect, or the Knight shift effect, or a combination of both, on the resonant frequencies of the nuclei present in the sample. It is a powerful technique that can provide detailed information on the topology, dynamics and three-dimensional structure of molecules in solution and the solid state. Thus, structural and dynamic information is obtainable (with or without "magic angle" spinning (MAS)) from NMR studies of quadrupolar nuclei (that is, those nuclei with spin S > 1⁄2) even in the presence of magnetic "dipole-dipole" interaction broadening (or simply, dipolar broadening) which is always much smaller than the quadrupolar interaction strength because it is a magnetic vs. an electric interaction effect.
Additional structural and chemical information may be obtained by performing double-quantum NMR experiments for quadrupolar nuclei such as 2H. Also, nuclear magnetic resonance is one of the techniques that has been used to design quantum automata, and also build elementary quantum computers.[6][7]
In its first few decades, nuclear magnetic resonance spectrometers used a technique known as continuous-wave spectroscopy (CW spectroscopy). Although NMR spectra could be, and have been, obtained using a fixed magnetic field and sweeping the frequency of the electromagnetic radiation, this more typically involved using a fixed frequency source and varying the current (and hence magnetic field) in an electromagnet to observe the resonant absorption signals. This is the origin of the counterintuitive, but still common, "high field" and "low field" terminology for low frequency and high frequency regions respectively of the NMR spectrum.
CW spectroscopy is inefficient in comparison with Fourier analysis techniques (see below) since it probes the NMR response at individual frequencies in succession. Since the NMR signal is intrinsically weak, the observed spectrum suffers from a poor signal-to-noise ratio. This can be mitigated by signal averaging i.e. adding the spectra from repeated measurements. While the NMR signal is constant between scans and so adds linearly, the random noise adds more slowly – proportional to the square-root of the number of spectra (see random walk). Hence the overall signal-to-noise ratio increases as the square-root of the number of spectra measured.
Most applications of NMR involve full NMR spectra, that is, the intensity of the NMR signal as a function of frequency. Early attempts to acquire the NMR spectrum more efficiently than simple CW methods involved illuminating the target simultaneously with more than one frequency. A revolution in NMR occurred when short pulses of radio-frequency radiation began to be used—centered at the middle of the NMR spectrum. In simple terms, a short square pulse of a given "carrier" frequency "contains" a range of frequencies centered about the carrier frequency, with the range of excitation (bandwidth) being inversely proportional to the pulse duration. The Fourier transform of an approximately square wave contains contributions from all the frequencies in the neighborhood of the principal frequency. The restricted range of the NMR frequencies made it relatively easy to use short (millisecond to microsecond) radio frequency pulses to excite the entire NMR spectrum.[citation needed]
Applying such a pulse to a set of nuclear spins simultaneously excites all the single-quantum NMR transitions. In terms of the net magnetization vector, this corresponds to tilting the magnetization vector away from its equilibrium position (aligned along the external magnetic field). The out-of-equilibrium magnetization vector precesses about the external magnetic field vector at the NMR frequency of the spins. This oscillating magnetization vector induces a current in a nearby pickup coil, creating an electrical signal oscillating at the NMR frequency. This signal is known as the free induction decay (FID), and it contains the vector sum of the NMR responses from all the excited spins. In order to obtain the frequency-domain NMR spectrum (NMR absorption intensity vs. NMR frequency) this time-domain signal (intensity vs. time) must be Fourier transformed. Fortunately the development of Fourier Transform NMR coincided with the development of digital computers and the digital Fast Fourier Transform. Fourier methods can be applied to many types of spectroscopy. (See the full article on Fourier transform spectroscopy.)
Richard R. Ernst was one of the pioneers of pulse NMR, and he won a Nobel Prize in chemistry in 1991 for his work on Fourier Transform NMR and his development of multi-dimensional NMR (see below).
The use of pulses of different shapes, frequencies and durations in specifically designed patterns or pulse sequences allows the spectroscopist to extract many different types of information about the molecule. Multi-dimensional nuclear magnetic resonance spectroscopy is a kind of FT NMR in which there are at least two pulses and, as the experiment is repeated, the pulse sequence is systematically varied. In multidimensional nuclear magnetic resonance there will be a sequence of pulses and, at least, one variable time period. In three dimensions, two time sequences will be varied. In four dimensions, three will be varied.
There are many such experiments. In one, these time intervals allow (amongst other things) magnetization transfer between nuclei and, therefore, the detection of the kinds of nuclear-nuclear interactions that allowed for the magnetization transfer. Interactions that can be detected are usually classified into two kinds. There are through-bond interactions and through-space interactions, the latter usually being a consequence of the nuclear Overhauser effect. Experiments of the nuclear Overhauser variety may be employed to establish distances between atoms, as for example by 2D-FT NMR of molecules in solution.
Although the fundamental concept of 2D-FT NMR was proposed by Jean Jeener from the Free University of Brussels at an International Conference, this idea was largely developed by Richard Ernst who won the 1991 Nobel prize in Chemistry for his work in FT NMR, including multi-dimensional FT NMR, and especially 2D-FT NMR of small molecules.[8] Multi-dimensional FT NMR experiments were then further developed into powerful methodologies for studying biomolecules in solution, in particular for the determination of the structure of biopolymers such as proteins or even small nucleic acids.[9]
In 2002 Kurt Wüthrich shared the Nobel Prize in Chemistry (with John Bennett Fenn and Koichi Tanaka) for his work with protein FT NMR in solution.
This technique complements X-ray crystallography in that it is frequently applicable to molecules in a liquid or liquid crystal phase, whereas crystallography, as the name implies, is performed on molecules in a solid phase. Though nuclear magnetic resonance is used to study solids, extensive atomic-level molecular structural detail is especially challenging to obtain in the solid state. There is little signal averaging by thermal motion in the solid state, where most molecules can only undergo restricted vibrations and rotations at room temperature, each in a slightly different electronic environment, therefore exhibiting a different NMR absorption peak. Such a variation in the electronic environment of the resonating nuclei results in a blurring of the observed spectra—which is often only a broad Gaussian band for non-quadrupolar spins in a solid- thus making the interpretation of such "dipolar" and "chemical shift anisotropy" (CSA) broadened spectra either very difficult or impossible.
Professor Raymond Andrew at Nottingham University in the UK pioneered the development of high-resolution solid-state nuclear magnetic resonance. He was the first to report the introduction of the MAS (magic angle sample spinning; MASS) technique that allowed him to achieve spectral resolution in solids sufficient to distinguish between chemical groups with either different chemical shifts or distinct Knight shifts. In MASS, the sample is spun at several kilohertz around an axis that makes the so-called magic angle θm (which is ~54.74°, where cos2θm = 1/3) with respect to the direction of the static magnetic field B0; as a result of such magic angle sample spinning, the chemical shift anisotropy bands are averaged to their corresponding average (isotropic) chemical shift values. The above expression involving cos2θm has its origin in a calculation that predicts the magnetic dipolar interaction effects to cancel out for the specific value of θm called the magic angle. One notes that correct alignment of the sample rotation axis as close as possible to θm is essential for cancelling out the dipolar interactions whose strength for angles sufficiently far from θm is usually greater than ~10 kHz for C-H bonds in solids, for example, and it is thus greater than their CSA values.
There are different angles for the sample spinning relative to the applied field for the averaging of quadrupole interactions and paramagnetic interactions, correspondingly ~30.6° and ~70.1°
A concept developed by Sven Hartmann and Erwin Hahn was utilized in transferring magnetization from protons to less sensitive nuclei (popularly known as cross-polarization) by M.G. Gibby, Alex Pines and John S. Waugh. Then, Jake Schaefer and Ed Stejskal demonstrated also the powerful use of cross-polarization under MASS conditions which is now routinely employed to detect low-abundance and low-sensitivity nuclei.
Because the intensity of nuclear magnetic resonance signals and, hence, the sensitivity of the technique depends on the strength of the magnetic field the technique has also advanced over the decades with the development of more powerful magnets. Advances made in audio-visual technology have also improved the signal-generation and processing capabilities of newer instruments.
As noted above, the sensitivity of nuclear magnetic resonance signals is also dependent on the presence of a magnetically susceptible nuclide and, therefore, either on the natural abundance of such nuclides or on the ability of the experimentalist to artificially enrich the molecules, under study, with such nuclides. The most abundant naturally occurring isotopes of hydrogen and phosphorus (for example) are both magnetically susceptible and readily useful for nuclear magnetic resonance spectroscopy. In contrast, carbon and nitrogen have useful isotopes but which occur only in very low natural abundance.
Other limitations on sensitivity arise from the quantum-mechanical nature of the phenomenon. For quantum states separated by energy equivalent to radio frequencies, thermal energy from the environment causes the populations of the states to be close to equal. Since incoming radiation is equally likely to cause stimulated emission (a transition from the upper to the lower state) as absorption, the NMR effect depends on an excess of nuclei in the lower states. Several factors can reduce sensitivity, including
Many chemical elements can be used for NMR analysis.[10]
Commonly used nuclei:
Other nuclei (usually used in the studies of their complexes and chemical binding, or to detect presence of the element):
The application of nuclear magnetic resonance best known to the general public is magnetic resonance imaging for medical diagnosis and magnetic resonance microscopy in research settings, however, it is also widely used in chemical studies, notably in NMR spectroscopy such as proton NMR, carbon-13 NMR, deuterium NMR and phosphorus-31 NMR. Biochemical information can also be obtained from living tissue (e.g. human brain tumors) with the technique known as in vivo magnetic resonance spectroscopy or chemical shift NMR Microscopy.
These studies are possible because nuclei are surrounded by orbiting electrons, which are charged particles that generate small, local magnetic fields that add to or subtract from the external magnetic field, and so will partially shield the nuclei. The amount of shielding depends on the exact local environment. For example, a hydrogen bonded to an oxygen will be shielded differently than a hydrogen bonded to a carbon atom. In addition, two hydrogen nuclei can interact via a process known as spin-spin coupling, if they are on the same molecule, which will split the lines of the spectra in a recognizable way.
As one of the two major spectroscopic techniques used in metabolomics, NMR is used to generate metabolic fingerprints from biological fluids to obtain information about disease states or toxic insults.
By studying the peaks of nuclear magnetic resonance spectra, chemists can determine the structure of many compounds. It can be a very selective technique, distinguishing among many atoms within a molecule or collection of molecules of the same type but which differ only in terms of their local chemical environment. NMR spectroscopy is used to unambiguously identify known and novel compounds, and as such, is usually required by scientific journals for identity confirmation of synthesized new compounds. See the articles on carbon-13 NMR and proton NMR for detailed discussions.
By studying T2 information, a chemist can determine the identity of a compound by comparing the observed nuclear precession frequencies to known frequencies. Further structural data can be elucidated by observing spin-spin coupling, a process by which the precession frequency of a nucleus can be influenced by the magnetization transfer from nearby chemically bound nuclei. Spin-spin coupling is observed in NMR of hydrogen-1 (1H NMR), since its natural abundance is nearly 100%; isotope enrichment is required for most other elements.
Because the nuclear magnetic resonance timescale is rather slow, compared to other spectroscopic methods, changing the temperature of a T2*experiment can also give information about fast reactions, such as the Cope rearrangement or about structural dynamics, such as ring-flipping in cyclohexane. At low enough temperatures, a distinction can be made between the axial and equatorial hydrogens in cyclohexane.
An example of nuclear magnetic resonance being used in the determination of a structure is that of buckminsterfullerene (often called "buckyballs", composition C60). This now famous form of carbon has 60 carbon atoms forming a sphere. The carbon atoms are all in identical environments and so should see the same internal H field. Unfortunately, buckminsterfullerene contains no hydrogen and so 13C nuclear magnetic resonance has to be used. 13C spectra require longer acquisition times since carbon-13 is not the common isotope of carbon (unlike hydrogen, where 1H is the common isotope). However, in 1990 the spectrum was obtained by R. Taylor and co-workers at the University of Sussex and was found to contain a single peak, confirming the unusual structure of buckminsterfullerene.[12]
Nuclear magnetic resonance is extremely useful for analyzing samples non-destructively. Radio waves and static magnetic fields easily penetrate many types of matter and anything that is not inherently ferromagnetic. For example, various expensive biological samples, such as nucleic acids, including RNA and DNA, or proteins, can be studied using nuclear magnetic resonance for weeks or months before using destructive biochemical experiments. This also makes nuclear magnetic resonance a good choice for analyzing dangerous samples.
In addition to providing static information on molecules by determining their 3D structures in solution, one of the remarkable advantages of NMR over X-ray crystallography is that it can be used to obtain important dynamic information including the low-frequency collective motion in proteins and DNA, for example in the Ca2+-calmodulin system.[13] The low-frequency internal motion in biomacromolecules and its biological functions have been discussed by Chou.[14]
Another use for nuclear magnetic resonance is data acquisition in the petroleum industry for petroleum and natural gas exploration and recovery. A borehole is drilled into rock and sedimentary strata into which nuclear magnetic resonance logging equipment is lowered. Nuclear magnetic resonance analysis of these boreholes is used to measure rock porosity, estimate permeability from pore size distribution and identify pore fluids (water, oil and gas). These instruments are typically low field NMR spectrometers.
Recently, real-time applications of NMR in liquid media have been developed using specifically designed flow probes (flow cell assemblies) which can replace standard tube probes. This has enabled techniques that can incorporate the use of high performance liquid chromatography (HPLC) or other continuous flow sample introduction devices.[15]
NMR has now entered the arena of real-time process control and process optimization in oil refineries and petrochemical plants. Two different types of NMR analysis are utilized to provide real time analysis of feeds and products in order to control and optimize unit operations. Time-domain NMR (TD-NMR) spectrometers operating at low field (2–20 MHz for 1H) yield free induction decay data that can be used to determine absolute hydrogen content values, rheological information, and component composition. These spectrometers are used in mining, polymer production, cosmetics and food manufacturing as well as coal analysis. High resolution FT-NMR spectrometers operating in the 60 MHz range with shielded permanent magnet systems yield high resolution 1H NMR spectra of refinery and petrochemical streams. The variation observed in these spectra with changing physical and chemical properties is modeled using chemometrics to yield predictions on unknown samples. The prediction results are provided to control systems via analogue or digital outputs from the spectrometer.
In the Earth's magnetic field, NMR frequencies are in the audio frequency range, or the very low frequency and ultra low frequency bands of the radio frequency spectrum. Earth's field NMR (EFNMR) is typically stimulated by applying a relatively strong dc magnetic field pulse to the sample and, after the end of the pulse, analyzing the resulting low frequency alternating magnetic field that occurs in the Earth's magnetic field due to free induction decay (FID). These effects are exploited in some types of magnetometers, EFNMR spectrometers, and MRI imagers. Their inexpensive portable nature makes these instruments valuable for field use and for teaching the principles of NMR and MRI.
An important feature of EFNMR spectrometry compared with high-field NMR is that some aspects of molecular structure can be observed more clearly at low fields and low frequencies, whereas other aspects observable at high fields are not observable at low fields. This is because:
NMR quantum computing uses the spin states of molecules as qubits. NMR differs from other implementations of quantum computers in that it uses an ensemble of systems, in this case molecules.
Various magnetometers use NMR effects to measure magnetic fields, including proton precession magnetometers (PPM) (also known as proton magnetometers), and Overhauser magnetometers. See also Earth's field NMR.
Major NMR instrument makers include Oxford Instruments, Bruker, Spinlock SRL, General Electric, JEOL, Kimble Chase, Philips, Siemens AG, and Agilent Technologies, Inc. (who own Varian, Inc.).
Wikimedia Commons has media related to: Nuclear magnetic resonance |
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「nuclear magnetic resonance spectrometry」「核磁気共鳴分析法」「NMR法」「核磁気共鳴」「核磁気共鳴現象」 |
拡張検索 | 「NMR spectroscopy」「NMR-CT」「NMR断層撮影」「NMR spectra」 |
関連記事 | 「NM」「N」 |
.