|
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (May 2012) |
Boxplot (with an interquartile range) and a probability density function (pdf) of a Normal
N(0,σ2) Population
In descriptive statistics, the interquartile range (IQR), also called the midspread or middle fifty, is a measure of statistical dispersion, being equal to the difference between the upper and lower quartiles,[1][2] IQR = Q3 − Q1. In other words, the IQR is the 1st Quartile subtracted from the 3rd Quartile; these quartiles can be clearly seen on a box plot on the data. It is a trimmed estimator, defined as the 25% trimmed mid-range, and is the most significant basic robust measure of scale.
Contents
- 1 Use
- 2 Examples
- 2.1 Data set in a table
- 2.2 Data set in a plain-text box plot
- 3 Interquartile range of distributions
- 3.1 Interquartile range test for normality of distribution
- 4 Interquartile range and outliers
- 5 See also
- 6 References
Use[edit]
Unlike (total) range, the interquartile range has a breakdown point of 25%, and is thus often preferred to the total range.
The IQR is used to build box plots, simple graphical representations of a probability distribution.
For a symmetric distribution (where the median equals the midhinge, the average of the first and third quartiles), half the IQR equals the median absolute deviation (MAD).
The median is the corresponding measure of central tendency.
Filtering of outliers (see below).
Examples[edit]
Data set in a table[edit]
-
i |
x[i] |
Quartile |
1 |
102 |
|
2 |
104 |
|
3 |
105 |
Q1 |
4 |
107 |
|
5 |
108 |
|
6 |
109 |
Q2
(median) |
7 |
110 |
|
8 |
112 |
|
9 |
115 |
Q3 |
10 |
116 |
|
11 |
118 |
|
For the data in this table the interquartile range is IQR = 115 − 105 = 10.
Data set in a plain-text box plot[edit]
+-----+-+
o * |-------| | |---|
+-----+-+
+---+---+---+---+---+---+---+---+---+---+---+---+ number line
0 1 2 3 4 5 6 7 8 9 10 11 12
For the data set in this box plot:
- lower (first) quartile Q1 = 7
- median (second quartile) Q2 = 8.5
- upper (third) quartile Q3 = 9
- interquartile range, IQR = Q3 − Q1 = 2
Interquartile range of distributions[edit]
The interquartile range of a continuous distribution can be calculated by integrating the probability density function (which yields the cumulative distribution function — any other means of calculating the CDF will also work). The lower quartile, Q1, is a number such that integral of the PDF from -∞ to Q1 equals 0.25, while the upper quartile, Q3, is such a number that the integral from -∞ to Q3 equals 0.75; in terms of the CDF, the quartiles can be defined as follows:
where CDF−1 is the quantile function.
The interquartile range and median of some common distributions are shown below
Distribution |
Median |
IQR |
Normal |
μ |
2 Φ−1(0.75)σ ≈ 1.349σ |
Laplace |
μ |
2b ln(2) ≈ 1.386b |
Cauchy |
μ |
2γ |
Interquartile range test for normality of distribution[edit]
The IQR, mean, and standard deviation of a population P can be used in a simple test of whether or not P is normally distributed, or Gaussian. If P is normally distributed, then the standard score of the first quartile, z1, is -0.67, and the standard score of the third quartile, z3, is +0.67. Given mean = X and standard deviation = σ for P, if P is normally distributed, the first quartile
and the third quartile
If the actual values of the first or third quartiles differ substantially[clarification needed] from the calculated values, P is not normally distributed.
Interquartile range and outliers[edit]
Figure 3. Box-and-whisker plot with four close and one far away extreme values, defined as outliers above Q3 + 1.5(IQR) and Q3 + 3(IQR), respectively.
The interquartile range is often used to find outliers in data. Outliers are observations that fall below Q1 - 1.5(IQR) or above Q3 + 1.5(IQR). In a boxplot, the highest and lowest occurring value within this limit are drawn as bar of the whiskers, and the outliers as individual points.
See also[edit]
- Midhinge
- Interdecile range
- Robust measures of scale
References[edit]
- ^ Upton, Graham; Cook, Ian (1996). Understanding Statistics. Oxford University Press. p. 55. ISBN 0-19-914391-9.
- ^ Zwillinger, D., Kokoska, S. (2000) CRC Standard Probability and Statistics Tables and Formulae, CRC Press. ISBN 1-58488-059-7 page 18.
Statistics
|
|
Descriptive statistics
|
|
Continuous data |
Location |
- Mean (Arithmetic, Geometric, Harmonic)
- Median
- Mode
|
|
Dispersion |
- Range
- Standard deviation
- Coefficient of variation
- Percentile
- Interquartile range
|
|
Shape |
- Variance
- Skewness
- Kurtosis
- Moments
- L-moments
|
|
|
Count data |
|
|
Summary tables |
- Grouped data
- Frequency distribution
- Contingency table
|
|
Dependence |
- Pearson product-moment correlation
- Rank correlation (Spearman's rho, Kendall's tau)
- Partial correlation
- Scatter plot
|
|
Statistical graphics |
- Bar chart
- Biplot
- Box plot
- Control chart
- Correlogram
- Forest plot
- Histogram
- Pie chart
- Q–Q plot
- Run chart
- Scatter plot
- Stemplot
- Radar chart
|
|
|
|
Data collection
|
|
Designing studies |
- Effect size
- Standard error
- Statistical power
- Sample size determination
|
|
Survey methodology |
- Sampling
- Stratified sampling
- Opinion poll
- Questionnaire
|
|
Controlled experiment |
- Design of experiments
- Randomized experiment
- Random assignment
- Replication
- Blocking
- Factorial experiment
- Optimal design
|
|
Uncontrolled studies |
- Natural experiment
- Quasi-experiment
- Observational study
|
|
|
|
Statistical inference
|
|
Statistical theory |
- Sampling distribution
- Order statistics
- Sufficiency
- Completeness
- Exponential family
- Permutation test (Randomization test)
- Empirical distribution
- Bootstrap
- U statistic
- Efficiency
- Asymptotics
- Robustness
|
|
Frequentist inference |
- Unbiased estimator (Mean unbiased minimum variance, Median unbiased)
- Biased estimators (Maximum likelihood, Method of moments, Minimum distance, Density estimation)
- Confidence interval
- Testing hypotheses
- Power
- Parametric tests (Likelihood-ratio, Wald, Score)
|
|
Specific tests |
- Z (normal)
- Student's t-test
- F
- Goodness of fit (Chi-squared, G, Sample source, sample normality, Skewness & kurtosis Normality, Model comparison, Model quality)
- Signed-rank (1-sample, 2-sample, 1-way anova)
- Shapiro–Wilk
- Kolmogorov–Smirnov
|
|
Bayesian inference |
- Bayesian probability
- Prior
- Posterior
- Credible interval
- Bayes factor
- Bayesian estimator
- Maximum posterior estimator
|
|
|
|
Correlation and regression analysis
|
|
Correlation |
- Pearson product–moment correlation
- Partial correlation
- Confounding variable
- Coefficient of determination
|
|
Regression analysis |
- Errors and residuals
- Regression model validation
- Mixed effects models
- Simultaneous equations models
- MARS
|
|
Linear regression |
- Simple linear regression
- Ordinary least squares
- General linear model
- Bayesian regression
|
|
Non-standard predictors |
- Nonlinear regression
- Nonparametric
- Semiparametric
- Isotonic
- Robust
- Heteroscedasticity
- Homoscedasticity
|
|
Generalized linear model |
- Exponential families
- Logistic (Bernoulli)
- Binomial
- Poisson
|
|
Partition of variance |
- Analysis of variance (ANOVA)
- Analysis of covariance
- Multivariate ANOVA
- Degrees of freedom
|
|
|
|
Categorical, multivariate, time-series, or survival analysis
|
|
Categorical data |
- Cohen's kappa
- Contingency table
- Graphical model
- Log-linear model
- McNemar's test
|
|
Multivariate statistics |
- Multivariate regression
- Principal components
- Factor analysis
- Cluster analysis
- Classification
- Copulas
|
|
Time series analysis |
General |
- Decomposition
- Trend
- Stationarity
- Seasonal adjustment
- Exponential smoothing
- Cointegration
|
|
Specific tests |
- Granger causality
- Q-Statistic
- Durbin–Watson
|
|
Time domain |
- ACF
- PACF
- XCF
- ARMA model
- ARIMA model
- ARCH
- Vector autoregression
|
|
Frequency domain |
- Spectral density estimation
- Fourier analysis
|
|
|
Survival analysis |
- Survival function
- Kaplan–Meier
- Logrank test
- Failure rate
- Proportional hazards models
- Accelerated failure time model
|
|
|
|
Applications
|
|
Biostatistics |
- Bioinformatics
- Clinical trials & studies
- Epidemiology
- Medical statistics
|
|
Engineering statistics |
- Chemometrics
- Methods engineering
- Probabilistic design
- Process & Quality control
- Reliability
- System identification
|
|
Social statistics |
- Actuarial science
- Census
- Crime statistics
- Demography
- Econometrics
- National accounts
- Official statistics
- Population
- Psychometrics
|
|
Spatial statistics |
- Cartography
- Environmental statistics
- Geographic information system
- Geostatistics
- Kriging
|
|
|
|
- Category
- Portal
- Outline
- Index
|
|