出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2012/06/22 16:09:07」(JST)
大陸間弾道ミサイル(たいりくかんだんどうミサイル、英: intercontinental ballistic missile、略称:ICBM)、または大陸間弾道弾(たいりくかんだんどうだん)とは、有効射程が超長距離で北アメリカ大陸とユーラシア大陸間など、大洋に隔てられた大陸間を飛翔できる弾道ミサイル。アメリカ合衆国・ソビエト連邦間では、戦略兵器制限交渉(SALT)により、有効射程が「アメリカ本土の北東国境と、ソ連本土の北西国境を結ぶ最短距離」である5,500km以上の弾道ミサイルと定義された。
目次
|
地面に掘られたミサイルサイロもしくは海中の潜水艦などから発射され、数百kmの高度までロケット噴射によって飛行するが、その間に速度、飛行の角度等を調整して目標地点へのコースが決められる。その後ロケットは燃焼を終えて切り離され、弾頭だけが慣性により無誘導のまま飛行する。即ち、大砲の砲弾を撃つ場合に、目標を狙うために発射時の砲の仰角や発射薬量を調整して、砲弾そのものは自力で進路や速度を変えることがないのと基本的には同じで、ICBMもロケット式の超巨大な大砲と考えることもでき、「大陸間弾道弾」の名称も多く用いられる。中距離・準中距離など、他の弾道ミサイル(弾道弾)も同様である。
ICBM等は、目標への誘導は発射から燃焼終了までの、ロケットの制御が可能な短時間になされなければならない。当初の弾道ミサイルは無線誘導を行なっていたため、液体燃料の使用とあいまって(後述)即時多数発射が不可能であった。1960年代に入ってアメリカのミニットマンは慣性誘導方式を用いるようになったため、短時間に同時発射ができるようになった。
ICBMの軌道は、他の弾道ミサイル(弾道弾)と同じく、全体的に見ると地球中心を焦点の一つとする楕円軌道を描いており、超長距離を飛行するため弾道の頂点高度は1,000kmから1,500kmにもなる。[要出典]通常、その射程距離は8,000kmから1万kmに達するので、命中精度の関係から全て核弾頭を搭載している。初期のICBMは単弾頭であったが、弾頭のMIRV化により、一基のミサイルに複数弾頭を搭載し、個別目標を攻撃できるようになった。
核弾頭は、当初のICBMの命中精度が劣り、平均誤差半径が大きかった(3km前後)ため、メガトン級の大威力のものが採用された。大威力の核弾頭は重く、搭載するロケットも大型の液体燃料式にしなければならないなど問題が多かった。その後、アメリカを先頭に急速に改良が進み、平均誤差半径0.1km程度のものさえ開発され、それに伴って核弾頭も400キロトンから200キロトン程度に小型軽量化されている。MIRVの実現も、一つにはそうした小型軽量化の成果であると言える。
推進方法には液体燃料と固体燃料の2種類がある。弾道ミサイルの先駆けとなったドイツのV2ロケットが液体燃料を使用していたこともあり、初期のICBMも液体燃料であった。これは、出力の調整ができる上に大きな力が出せる長所があるため、現在でも宇宙ロケットはほとんどこの方式である。一方で、構造が複雑で高価になり、取り扱いも難しく、長時間かけて燃料を注入しなければならないので即時発射ができないなど、軍用ミサイルとしては難がある。しかし1960年にアメリカで固体燃料が実用化された。出力の調整ができず大きな力が出せない欠点はあるが、構造が簡単で小型かつ安価であり、安全性も高く、即時発射が可能であるので、アメリカでは固体燃料のICBMが主流を占めた。一方旧ソ連では液体燃料に固執し、ミサイル内に燃料を入れたままサイロ内で保持できる貯蔵式液体燃料のICBMを多数配備した。
爆撃機よりも迅速に敵本国を攻撃できる兵器として、アメリカでは早くも1940年代後半から開発が進められていたが、世界最初のICBMは初の人工衛星スプートニク1号の打ち上げに使用された旧ソ連のR-7である(1957年)。アメリカ合衆国で実用化されるようになったのは、アトラスであった。アトラスは1959年に実戦配備が開始された。1962年にはタイタン Iが実戦配備に付けられたが、R-7やアトラス・タイタンは、液体酸素をロケット燃料の酸化剤に用いているため、即時発射態勢で待機ができず、発射準備にも時間を要する欠点があった。しかし60年代に入って貯蔵式液体燃料方式が普及し、ソ連の大陸間弾道弾やアメリカのタイタン IIはこの方式を採用するなど、即時発射の問題は解決した。アメリカでは1962年からミニットマンの配備を始めたが、これは固体燃料を用いたために即時発射が可能であっただけでなく、小型で安価であったため量産され、1,000基に達した。
それまでの中距離弾道ミサイル(IRBM)が、ソ連攻撃のためにヨーロッパに配備する必要があったのに対し、アメリカ合衆国本土配備でもソ連攻撃が可能となった事は、政治的に有利であった。
1993年の第二次戦略兵器削減条約(START2)では米ロが使用するICBMでのMIRVの使用を禁止したが、結局ロシア側が批准せず、その後米ロ間で結ばれたモスクワ条約ではMIRVを禁止しなかったため、MIRVの搭載も可能となった。
現在ICBMを配備している国は、アメリカ合衆国、ロシア、中華人民共和国の3国で、この3国に並ぶ核大国であるイギリスはICBMを配備せず、核戦略を潜水艦発射弾道ミサイル(SLBM)に頼っている。またフランスは冷戦期間中にIRBMを固定配備していたが、冷戦終了後に廃棄し、また1970年代には大陸間弾道ミサイルの開発構想も持ったが断念し、現在はイギリスと同様にSLBMのみとなっている。
項目名(制式番号、名称)
項目名(ロシア制式番号、DOD識別番号、NATOコードネーム)
項目名(制式番号、DOD番号)
|
この記事は、武器・兵器に関連した書きかけの項目です。加筆・訂正などをして下さる協力者を求めています。(軍事ポータル / 軍事PJ) |
This article includes a list of references, but its sources remain unclear because it has insufficient inline citations. Please help to improve this article by introducing more precise citations. (March 2009) |
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (September 2009) |
An intercontinental ballistic missile (ICBM) is a ballistic missile with a long range (greater than 5,500 km or 3,500 miles) typically designed for nuclear weapons delivery (delivering one or more nuclear warheads). Most modern designs support multiple independently targetable reentry vehicles (MIRVs), allowing a single missile to carry several warheads, each of which can strike a different target.
Early ICBMs had limited accuracy that allowed them to be used only against the largest targets such as cities. They were seen as a "safe" basing option, one that would keep the deterrent force close to home where it would be difficult to attack. Attacks against military targets, if desired, still demanded the use of a manned bomber. Second and third generation designs dramatically improved accuracy to the point where even the smallest point targets can be successfully attacked. Similar evolution in size has allowed similar missiles to be placed on submarines, where they are known as submarine launched ballistic missiles, or SLBMs. Submarines are an even safer basing option than land-based missiles, able to move about the ocean at will. This evolution in capability has pushed the manned bomber from the front-line deterrent force in all forces but the United States and Russia, and land-based ICBMs have similarly given way largely to SLBMs.
ICBMs are differentiated by having greater range and speed than other ballistic missiles: intermediate-range ballistic missiles (IRBMs), medium-range ballistic missiles (MRBMs), short-range ballistic missiles (SRBMs)—these shorter range ballistic missiles are known collectively as theatre ballistic missiles. There is no single, standardized definition of what ranges would be categorized as intercontinental, intermediate, medium, or short. Additionally, ICBMs are generally considered to be nuclear only; although several conceptual designs of conventionally armed missiles have been considered, the launch of such a weapon would be such a threat that it would demand a nuclear response, eliminating any military value of such a weapon.
Contents
|
This unreferenced section requires citations to ensure verifiability. |
The development of the world's first practical design for an ICBM, A9/10, intended for use in bombing New York and other American cities, was undertaken in Nazi Germany by the team of Wernher von Braun under Projekt Amerika. The ICBM A9/A10 rocket initially was intended to be guided by radio, but was changed to be a piloted craft after the failure of Operation Elster. The second stage of the A9/A10 rocket was tested a few times in January and February 1945. The progenitor of the A9/A10 was the German V-2 rocket, also designed by von Braun and widely used at the end of World War II to bomb British and Belgian cities. All of these rockets used liquid propellants. Following the war, von Braun and other leading German scientists were relocated to the United States to work directly for the U.S. Army through Operation Paperclip, developing the IRBMs, ICBMs, and launchers.
This technology was also predicted by US Army General Hap Arnold who wrote in 1943:
Someday, not too distant, there can come streaking out of somewhere – we won’t be able to hear it, it will come so fast – some kind of gadget with an explosive so powerful that one projectile will be able to wipe out completely this city of Washington.[1][2]
In the immediate post-war era, the US and USSR both started rocket research programs based on the German wartime designs, especially the V-2. In the US, each branch of the military started its own programs, leading to considerable duplication of effort. In the USSR, rocket research was centrally organized, although several teams worked on different designs. Early designs from both countries were short-range missiles, like the V-2, but improvements quickly followed. China deployed a very small ICBM force of DF-5 missiles beginning in 1981.[3]
In the USSR early development was focused on missiles able to attack European targets. This changed in 1953 when Sergei Korolyov was directed to start development of a true ICBM able to deliver newly developed hydrogen bombs. Given steady funding throughout, the R-7 developed with some speed. The first launch took place on 15 May 1957 and led to an unintended crash 400 km from the site. The first successful test followed on 21 August 1957; the R-7 flew over 6000 km and became the world's first ICBM[4]. The first strategic-missile unit became operational on 9 February 1959 at Plesetsk in north-west Russia[5].
It was the same R-7 launch vehicle that placed the first artificial satellite in space, Sputnik, on 4 October 1957. The first human spaceflight in history was accomplished on a derivative of R-7, Vostok, on 12 April 1961, by Soviet cosmonaut Yuri Gagarin. A deeply mordernised version of the R-7 is still used as the launch vehicle for the Soviet/Russian Soyuz spacecraft, marking more than 50 years of operational history of the original Sergei Korolyov's rocket design.
The U.S. initiated ICBM research in 1946 with the MX-774 project. This was a three-stage effort with the ICBM development not starting until the third stage. However, funding was cut after only three partially successful launches in 1948 of the second stage design, used to test variations on the V-2 design. With overwhelming air superiority and truly intercontinental bombers, the newly forming US Air Force did not take the problem of ICBM development seriously. Things changed in 1953 with the Soviet testing of their first hydrogen bomb, but it was not until 1954 that the Atlas missile program was given the highest national priority. The Atlas A first flew on 11 June 1957; the flight lasted only about 24 seconds before the rocket blown up. The first successful flight of an Atlas missile to full range occurred 28 November 1958[6]. The first armed version of the Atlas, the Atlas D, was declared operational in January 1959 at Vandenberg, although it had not yet flown. The first test flight was carried out on 9 July 1959,[7][8] and the missile was accepted for service on 1 September.
The R-7 and Atlas each required a large launch facility, making them vulnerable to attack, and could not be kept in a ready state. Failure rates were very high throughout the early years of ICBM technology. Human spaceflight programs (Vostok, Mercury, Voskhood, Gemini, etc.) served as a highly visible means of demonstrating confidence in reliability, with successes translating directly to national defense implications. The US was well behind the Soviet Union in the Space Race, so President Kennedy increased the stakes with the Apollo Program, which used Saturn rocket technology that had been funded by Eisenhower.
These early ICBMs also formed the basis of many space launch systems. Examples include R-7, Atlas, Redstone, Titan, and Proton, which was derived from the earlier ICBMs but never deployed as an ICBM. The Eisenhower administration supported the development of solid-fueled missiles such as the LGM-30 Minuteman, Polaris and Skybolt. Modern ICBMs tend to be smaller than their ancestors, due to increased accuracy and smaller and lighter warheads, and use solid fuels, making them less useful as orbital launch vehicles.
The Western view of the deployment of these systems was governed by the strategic theory of Mutual Assured Destruction. In the 1950s and 1960s, development began on Anti-Ballistic Missile systems by both the U.S. and USSR; these systems were restricted by the 1972 ABM treaty. The first successful ABM test were conducted by the USSR in 1961, that later deployed a fully operating system defending Moscow in the 1970s (see Moscow ABM system).
The 1972 SALT treaty froze the number of ICBM launchers of both the USA and the USSR at existing levels, and allowed new submarine-based SLBM launchers only if an equal number of land-based ICBM launchers were dismantled. Subsequent talks, called SALT II, were held from 1972 to 1979 and actually reduced the number of nuclear warheads held by the USA and USSR. SALT II was never ratified by the United States Senate, but its terms were nevertheless honored by both sides until 1986, when the Reagan administration "withdrew" after accusing the USSR of violating the pact.
In the 1980s, President Ronald Reagan launched the Strategic Defense Initiative as well as the MX and Midgetman ICBM programs.
China developed a minimal independent nuclear deterrent entering its own cold war after an idealogical split with the Soviet Union beginning in the early 1960s. After first testing a domestic built nuclear weapon in 1964, it went on to develop various warheads and missiles. Beginning in the early 1970s, the liquid fuelled DF-5 ICBM was developed and used as a satellite launch vehicle in 1975. The DF-5, with range of 10,000 to 12,000 km long enough to strike the western US and the USSR, was silo deployed with the first pair in service by 1981 with possibly twenty missiles in service by the late 1990s.[3] China also deployed the JL-1 Medium-range ballistic missile with a reach of 1700 km aboard the ultimately unsuccessful type 92 submarine.[9]
In 1991, the United States and the Soviet Union agreed in the START I treaty to reduce their deployed ICBMs and attributed warheads.
As of 2009[update], all five of the nations with permanent seats on the United Nations Security Council have operational long-range ballistic missile systems: all have submarine-launched missiles, and Russia, the United States and China also have land-based ICBMs (the US' missiles are silo-based, China and Russia have both silo and road-mobile missiles).
Israel is believed to have deployed a road mobile nuclear ICBM, the Jericho III, which entered service in 2008, an upgraded version is in development.[10][11]
India successfully test fired Agni V, with a strike range of more than 5,000 km on 19 April 2012, claiming entry into the ICBM club.[12]
It is speculated by some intelligence agencies that North Korea is developing an ICBM;[13] two tests of somewhat different developmental missiles in 1998 and 2006 were not fully successful.[14][15] On 5 April 2009, North Korea launched a missile. They claimed that it was to launch a satellite, but there is no proof to back up that claim.[16] Likewise, North Korea attempted another test fire in April 2012, claimed also as a satellite launch, but it broke up in flight after 90 seconds.
Most countries in the early stages of developing ICBMs have used liquid propellants, with the known exceptions being the Indian Agni-V, the planned South African RSA-4 ICBM and the now in service Israeli Jericho 3.[17]
The following flight phases can be distinguished:
Modern ICBMs typically carry multiple independently targetable reentry vehicles (MIRVs), each of which carries a separate nuclear warhead, allowing a single missile to hit multiple targets. MIRV was an outgrowth of the rapidly shrinking size and weight of modern warheads and the Strategic Arms Limitation Treaties which imposed limitations on the number of launch vehicles (SALT I and SALT II). It has also proved to be an "easy answer" to proposed deployments of ABM systems—it is far less expensive to add more warheads to an existing missile system than to build an ABM system capable of shooting down the additional warheads; hence, most ABM system proposals have been judged to be impractical. The first operational ABM systems were deployed in the U.S. during 1970s. Safeguard ABM facility was located in North Dakota and was operational from 1975–1976. The USSR deployed its Galosh ABM system around Moscow in the 1970s, which remains in service. Israel deployed a national ABM system based on the Arrow missile in 1998,[18] but it is mainly designed to intercept shorter-ranged theater ballistic missiles, not ICBMs. The U.S. Alaska-based National missile defense system attained initial operational capability in 2004.[19]
ICBMs can be deployed from multiple platforms:
The last three kinds are mobile and therefore hard to find.
During storage, one of the most important features of the missile is its serviceability. One of the key features of the first computer-controlled ICBM, the Minuteman missile, was that it could quickly and easily use its computer to test itself.
In flight, a booster pushes the warhead and then falls away. Most modern boosters are solid-fueled rocket motors, which can be stored easily for long periods of time. Early missiles used liquid-fueled rocket motors. Many liquid-fueled ICBMs could not be kept fuelled all the time as the cryogenic liquid oxygen boiled off and caused ice formation, and therefore fueling the rocket was necessary before launch. This procedure was a source of significant operational delay, and might allow the missiles to be destroyed by enemy counterparts before they could be used. To resolve this problem the British invented the missile silo that protected the missile from a first strike and also hid fuelling operations underground.
Once the booster falls away, the warhead continues on an unpowered ballistic trajectory, much like an artillery shell or cannon ball. The warhead is encased in a cone-shaped reentry vehicle and is difficult to detect in this phase of flight as there is no rocket exhaust or other emissions to mark its position to defenders. The high speeds of the warheads make them difficult to intercept and allow for little warning striking targets many thousands of kilometers away from the launch site (and due to the possible locations of the submarines: anywhere in the world) within approximately 30 minutes.
Many authorities say that missiles also release aluminized balloons, electronic noisemakers, and other items intended to confuse interception devices and radars (see penetration aid).
As the nuclear warhead reenters the Earth's atmosphere its high speed causes compression of the air, leading to a dramatic rise in temperature which would destroy it if it were not shielded in some way. As a result, warhead components are contained within an aluminium honeycomb substructure, sheathed in pyrolytic graphite-epoxy resin composite, with a heat-shield layer on top which is constructed out of 3-Dimensional Quartz Phenolic.
Accuracy is crucial, because doubling the accuracy decreases the needed warhead energy by a factor of four. Accuracy is limited by the accuracy of the navigation system and the available geophysical information.
Strategic missile systems are thought to use custom integrated circuits designed to calculate navigational differential equations thousands to millions of times per second in order to reduce navigational errors caused by calculation alone. These circuits are usually a network of binary addition circuits that continually recalculate the missile's position. The inputs to the navigation circuit are set by a general purpose computer according to a navigational input schedule loaded into the missile before launch.
One particular weapon developed by the Soviet Union (FOBS) had a partial orbital trajectory, and unlike most ICBMs its target could not be deduced from its orbital flight path. It was decommissioned in compliance with arms control agreements, which address the maximum range of ICBMs and prohibit orbital or fractional-orbital weapons.
Low-flying guided cruise missiles are an alternative to ballistic missiles.
An editor has expressed a concern that this article lends undue weight to certain ideas, incidents, controversies or matters relative to the article subject as a whole. Please help to create a more balanced presentation. Discuss and resolve this issue before removing this message. (September 2009) |
Russia, the United States and China are the only countries currently known to possess land-based ICBMs.[20]
The United States currently operates 450 ICBMs in three USAF bases. The only model deployed is LGM-30G Minuteman-III.
All previous USAF Minuteman II missiles have been destroyed in accordance with START, and their launch silos have been sealed or sold to the public. To comply with the START II most U.S. multiple independently targetable reentry vehicles, or MIRVs, have been eliminated and replaced with single warhead missiles. The powerful MIRV-capable Peacekeeper missiles were phased out in 2005.[21] However, since the abandonment of the START II treaty, the U.S. is said to be considering retaining 800 warheads on an existing 450 missiles.[22]
The Russian Strategic Rocket Forces have 369 ICBMs able to deliver 1,247 nuclear warheads, 58 silo-based R-36M2 (SS-18), 70 silo-based UR-100N (SS-19), 171 mobile RT-2PM "Topol" (SS-25), 52 silo-based RT-2UTTH "Topol M" (SS-27), 18 mobile RT-2UTTH "Topol M" (SS-27), 6 (15 in December 2011[23]) mobile RS-24 "Yars" (SS-29) (Future replacement for R-36 & UR-100N missiles)
China has developed several long range ICBMs, like the DF-31. The Dongfeng 5 or DF-5 is a 3 stage liquid fuel ICBM and has an estimated range of 13,000 kilometers. The DF-5 had its first flight in 1971 and was in operational service 10 years later. One of the downsides of the missile was that it took between 30 and 60 minutes to fuel. The Dong Feng 31 (a.k.a. CSS-10) is a medium-range, three stage, solid propellant intercontinental ballistic missile, and is a land-based variant of the submarine launched JL-2. The DF-41 or CSS-X-10 can carry up to 10 nuclear warheads, which are maneuverable reentry vehicles and has a range of approximately 12,000–14,000 km.[24][25][26][27]
Israel is believed to have deployed a road mobile nuclear ICBM, the Jericho III, which entered service in 2008. It is possible for the missile to be equipped with a single 750 kg nuclear warhead or up to three MIRV warheads. It is believed to be based on the Shavit space launch vehicle and is estimated to have a range of 4,800 to 11,500 km[10] (2,982 to 7,180 miles). In November 2011 Israel tested an ICBM believed to be an upgraded version of the Jericho III.[11]
India has a series of ballistic missiles called Agni, of which the latest is Agni-V. On 19 April 2012, India successfully test fired Agni-V, a three stage solid fueled missile, with a strike range of more than 5,000 km.[12]
All current designs of submarine launched ballistic missiles have intercontinental range. Current operators of such missiles are the United States, Russia, United Kingdom, and France. The People's Republic of China and India are both working on near term deployable SLBM systems; although from 1986, China had deployed a system from the Type 092 submarine. One of the two submarines was lost at sea, and neither of the ultimately unsuccessful class was ever believed to have deployed away from home waters.[28]
|
|
関連記事 | 「IC」 |
.