出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/02/12 04:02:44」(JST)
GTPases (singular GTPase) are a large family of hydrolase enzymes that can bind and hydrolyze guanosine triphosphate (GTP).[1] The GTP binding and hydrolysis takes place in the highly conserved G domain common to all GTPases.
GTPases play an important role in:
The hydrolysis of the γ phosphate of GTP into guanosine diphosphate (GDP) and Pi, inorganic phosphate, occurs by the SN2 mechanism (see nucleophilic substitution) via a pentavalent intermediate state and is dependent on the magnesium ion Mg2+.
In most GTPases, the specificity for the base guanine is imparted by the base-recognition motif, which has the consensus sequence [N/T]KXD.[2]
Regulatory GTPases, also called the GTPase superfamily, are GTPases used for regulation of other biochemical processes. Most prominent among the regulatory GTPases are the G proteins.
All regulatory GTPases have a common mechanism that enables them to switch a signal transduction chain on and off. Toggling the switch is performed by the unidirectional change of the GTPase from the active, GTP-bound form to the inactive, GDP-bound form by hydrolysis of the GTP through intrinsic GTPase-activity, effectively switching the GTPase off. This reaction is initiated by GTPase-activating proteins (GAPs), coming from another signal transduction pathway. It can be reversed (switching the GTPase on again) by Guanine nucleotide exchange factors (GEFs), which cause the GDP to dissociate from the GTPase, leading to its association with a new GTP. This closes the cycle to the active state of the GTPase; the irreversible hydrolysis of the GTP to GDP forces the cycle to run only in one direction. Only the active state of the GTPase can transduce a signal to a reaction chain.
The efficiency of the signal transduction via a GTPase depends on the ratio of active to inactive GTPase. That
equals:
with kdiss.GDP being the dissociation constant of GDP, and kcat.GTP the hydrolysis constant of GTP for the specific GTPase. Both constants can be modified by special regulatory proteins.
The amount of active GTPase can be changed in several ways :
These G proteins are made from three subunits, with the G domain located on the largest one (the α unit); together with the two smaller subunits (β and γ units), they form a tightly associated protein complex. α and γ unit are associated with the membrane by lipid anchors. Heterotrimeric G proteins act as the specific reaction partners of G protein-coupled receptors. The GTPase is normally inactive. Upon receptor activation, the intracellular receptor domain activates the GTPase, which in turn activates other molecules of the signal transduction chain, either via the α unit or the βγ complex. Among the target molecules of the active GTPase are adenylate cyclase and ion channels. The heterotrimeric G proteins can be classified by sequence homology of the α unit into four families:
By combination of different α, β and γ subunits, a great variety (>1000) G proteins can be produced. GDP is not needed for GTP.
In the basic state, the Gα-GDP-Gβγ complex and the receptor that can activate it are separately associated with the membrane. On receptor activation, the receptor becomes highly affine for the G protein - GDP complex. On binding with the complex, GDP dissociates from the complex; the receptor works as a GEF - GDP-GTP Exchange Factor; the free complex has a high affinity for GTP. Upon GTP binding, both Gα-GTP and Gβγ separate from both the receptor and from each other. Depending on the lifetime of the active state of the receptor, it can activate more G proteins this way.
Both Gα-GTP and Gβγ can now activate separate and/or the same effector molecules, thus sending the signal further down the signal reaction chain. Once the intrinsic GTPase activity of the α unit has hydrolyzed the GTP to GDP, and then the two parts associate to the original, inactive state. The speed of the hydrolysis reaction works as an internal clock for the length of the signal.
These are small monomeric proteins homologous to Ras. They are also called small GTPases. Small GTPases have a molecular weight of about 21 kilodaltons and generally serve as molecular switches for a variety of cellular signaling events. According to their primary amino acid sequences and biochemical properties, the Ras superfamily is further divided into five subfamilies: Ras, Rho, Rab, Arf and Ran. The Rho subfamily is further divided into RHOA, RAC1, and CDC42.[3]
These GTPases play an important role in initiation, elongation and termination of protein biosynthesis.
See signal recognition particle (SRP).
See dynamin as a prototype for large GTPases.
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「GTP加水分解酵素」「guanosine triphosphatase」「GTP phosphohydrolase」「GTPアーゼ」 |
拡張検索 | 「低分子量GTPase」「GTPase-activating protein」「p120 GTPase activating protein」「Ral GTPase」 |
[★] グアノシントリホスファターゼ、GTP加水分解酵素、GTP分解酵素、GTPアーゼ
.