Solute carrier family 2 (facilitated glucose transporter), member 4 |
Effect of insulin on glucose uptake and metabolism. Insulin binds to its receptor (1) which in turn starts many protein activation cascades (2). These include: translocation of Glut-4 transporter to the plasma membrane and influx of glucose (3), glycogen synthesis (4), glycolysis (5) and fatty acid synthesis (6). |
Identifiers |
Symbols |
SLC2A4 ; GLUT4 |
External IDs |
OMIM: 138190 MGI: 95758 HomoloGene: 74381 IUPHAR: 878 ChEMBL: 5874 GeneCards: SLC2A4 Gene |
Gene ontology |
Molecular function |
• glucose transmembrane transporter activity
• protein binding
• D-glucose transmembrane transporter activity
|
Cellular component |
• multivesicular body
• plasma membrane
• integral component of plasma membrane
• coated pit
• external side of plasma membrane
• endomembrane system
• vesicle membrane
• membrane
• clathrin-coated vesicle
• trans-Golgi network transport vesicle
• insulin-responsive compartment
• sarcolemma
• perinuclear region of cytoplasm
• extracellular vesicular exosome
|
Biological process |
• carbohydrate metabolic process
• hexose transport
• amylopectin biosynthetic process
• glucose transport
• cellular response to insulin stimulus
• glucose homeostasis
• small molecule metabolic process
• response to ethanol
• glucose import
• brown fat cell differentiation
• transmembrane transport
• membrane organization
• cellular response to osmotic stress
|
Sources: Amigo / QuickGO |
|
RNA expression pattern |
|
More reference expression data |
Orthologs |
Species |
Human |
Mouse |
|
Entrez |
6517 |
20528 |
|
Ensembl |
ENSG00000181856 |
ENSMUSG00000018566 |
|
UniProt |
P14672 |
P14142 |
|
RefSeq (mRNA) |
NM_001042 |
NM_009204 |
|
RefSeq (protein) |
NP_001033 |
NP_033230 |
|
Location (UCSC) |
Chr 17:
7.18 – 7.19 Mb |
Chr 11:
69.94 – 69.95 Mb |
|
PubMed search |
[1] |
[2] |
|
|
Glucose transporter type 4, also known as GLUT4, is a protein that in humans is encoded by the GLUT4 gene. GLUT4 is the insulin-regulated glucose transporter found primarily in adipose tissues and striated muscle (skeletal and cardiac). The first evidence for this distinct glucose transport protein was provided by David James in 1988.[1] The gene that encodes GLUT4 was cloned[2][3] and mapped in 1989.[4]
Recent reports demonstrated the presence of GLUT4 gene in central nervous system such as the hippocampus. Moreover, impairment in insulin-stimulated trafficking of GLUT4 in the hippocampus result in decreased metabolic activities and plasticity of hippocampal neurons, which leads to depressive like behaviour and cognitive dysfunction.[5][6][7]
Contents
- 1 Tissue distribution
- 2 Regulation
- 2.1 Insulin
- 2.2 Muscle contraction
- 3 Interactions
- 4 Interactive pathway map
- 5 References
- 6 Further reading
- 7 External links
Tissue distribution
GLUT4 is primarily found in:
- Skeletal muscle
- Cardiac muscle
- Adipose tissue
Regulation
Insulin
Under conditions of low insulin, GLUT4 is sequestered in intracellular vesicles in muscle and fat cells. Insulin induces a rapid increase in the uptake of glucose by inducing the translocation of GLUT4 from these vesicles to the plasma membrane. As the vesicles fuse with the plasma membrane, GLUT4 transporters are inserted and become available for transporting glucose, and glucose absorption increases.[8]
Insulin binds to the insulin receptor in its dimeric form and activates the receptor's tyrosine-kinase domain. The receptor then phosphorylates and subsequently recruits Insulin Receptor Substrate or IRS-1, which in turn binds the enzyme PI-3 kinase through the binding of the enzyme's SH2 domain to the pTyr of IRS. PI-3 kinase converts the membrane lipid PIP2 to PIP3. PIP3 is specifically recognized by the PH domains of PKB (protein kinase B)or AKT, and also for PDK1 which, being localized together with PKB, can phosphorylate and activate PKB. Once phosphorylated, PKB is in its active form and phosphorylates TBC1D4, which inhibits the GAP domain or the GTPase-activating domain associated with TBC1D4, allowing for Rab protein to change from its GDP to GTP bound state. Inhibition of the GTPase-activating domain leaves proteins next in the cascade in their active form and stimulates GLUT4 to be expressed on the plasma membrane.
At the cell surface, GLUT4 permits the facilitated diffusion of circulating glucose down its concentration gradient into muscle and fat cells. Once within cells, glucose is rapidly phosphorylated by glucokinase in the liver and hexokinase in other tissues to form glucose-6-phosphate, which then enters glycolysis or is polymerized into glycogen. Glucose-6-phosphate cannot diffuse back out of cells, which also serves to maintain the concentration gradient for glucose to passively enter cells.[9]
Knockout mice that are heterozygous for GLUT4 develop insulin resistance in their muscles as well as diabetes.[10]
Muscle contraction
Muscle contraction stimulates muscle cells to translocate GLUT4 receptors to their surfaces. This is especially true in cardiac muscle, where continuous contraction can be relied upon; but is observed to a lesser extent in skeletal muscle.[11]
Interactions
GLUT4 has been shown to interact with death-associated protein 6.[12]
Interactive pathway map
Click on genes, proteins and metabolites below to link to respective articles. [§ 1]
[[File:
|{{{bSize}}}px|alt=Glycolysis and Gluconeogenesis edit||]]
File:WP534.png
Glycolysis and Gluconeogenesis edit
- ^ The interactive pathway map can be edited at WikiPathways: "GlycolysisGluconeogenesis_WP534".
References
- ^ James DE, Brown R, Navarro J, Pilch PF (May 1988). "Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein". Nature 333 (6169): 183–5. doi:10.1038/333183a0. PMID 3285221.
- ^ James DE, Strube M, Mueckler M (March 1989). "Molecular cloning and characterization of an insulin-regulatable glucose transporter". Nature 338 (6210): 83–7. doi:10.1038/338083a0. PMID 2645527.
- ^ Birnbaum MJ (April 1989). "Identification of a novel gene encoding an insulin-responsive glucose transporter protein". Cell 57 (2): 305–15. doi:10.1016/0092-8674(89)90968-9. PMID 2649253.
- ^ Bell GI, Murray JC, Nakamura Y, Kayano T, Eddy RL, Fan YS, Byers MG, Shows TB (August 1989). "Polymorphic human insulin-responsive glucose-transporter gene on chromosome 17p13". Diabetes 38 (8): 1072–5. doi:10.2337/diabetes.38.8.1072. PMID 2568955.
- ^ Patel, Sita Sharan; Udayabanu (March 2014). "Malairaman". Metab Brain Dis 29 (1): 121–30. doi:10.1007/s11011-014-9480-0. PMID 24435938.
- ^ Piroli, GG; Grillo, CA; Reznikov, LR; Adams, S; McEwen, BS; Charron, MJ; Reagan, LP (2007). "Corticosterone impairs insulin-stimulated translocation of GLUT4 in the rat hippocampus.". Neuroendocrinology 85 (2): 71–80. doi:10.1159/000101694. PMID 17426391.
- ^ Huang CC, Lee CC, Hsu KS (2010). "The role of insulin receptor signaling in synaptic plasticity and cognitive function". Chang Gung Med J 33 (2): 115–25. PMID 20438663.
- ^ Cushman SW, Wardzala LJ (May 1980). "Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane" (PDF). J. Biol. Chem. 255 (10): 4758–62. PMID 6989818.
- ^ Watson RT, Kanzaki M, Pessin JE (2004). "Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes". Endocr. Rev. 25 (2): 177–204. doi:10.1210/er.2003-0011. PMID 15082519.
- ^ Stenbit AE, Tsao TS, Li J, Burcelin R, Geenen DL, Factor SM, Houseknecht K, Katz EB, Charron MJ (1997). "GLUT4 heterozygous knockout mice develop muscle insulin resistance and diabetes". Nature Medicine 3 (10): 1096–1101. doi:10.1038/nm1097-1096. PMID 9334720.
- ^ Lund S, Holman GD, Schmitz O, Pedersen O (1995). "Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin". Proc. Natl. Acad. Sci. U.S.A. 92 (13): 5817–21. doi:10.1073/pnas.92.13.5817. PMC 41592. PMID 7597034.
- ^ Lalioti VS, Vergarajauregui S, Pulido D, Sandoval IV (May 2002). "The insulin-sensitive glucose transporter, GLUT4, interacts physically with Daxx. Two proteins with capacity to bind Ubc9 and conjugated to SUMO1". J. Biol. Chem. 277 (22): 19783–91. doi:10.1074/jbc.M110294200. PMID 11842083.
Further reading
- Slot JW, Geuze HJ, Gigengack S, Lienhard GE, James DE (April 1991). "Immuno-localization of the insulin regulatable glucose transporter in brown adipose tissue of the rat". J. Cell Biol. 113 (1): 123–35. doi:10.1083/jcb.113.1.123. PMC 2288909. PMID 2007617.
- Govers R, Coster AC, James DE (July 2004). "Insulin increases cell surface GLUT4 levels by dose dependently discharging GLUT4 into a cell surface recycling pathway". Mol. Cell. Biol. 24 (14): 6456–66. doi:10.1128/MCB.24.14.6456-6466.2004. PMC 434240. PMID 15226445.
- Ng Y, Ramm G, Lopez JA, James DE (April 2008). "Rapid activation of Akt2 is sufficient to stimulate GLUT4 translocation in 3T3-L1 adipocytes". Cell Metab. 7 (4): 348–56. doi:10.1016/j.cmet.2008.02.008. PMID 18396141.
- Foster LJ, Klip A (2000). "Mechanism and regulation of GLUT-4 vesicle fusion in muscle and fat cells". Am. J. Physiol., Cell Physiol. 279 (4): C877–90. PMID 11003568.
- Bryant NJ, Govers R, James DE (2002). "Regulated transport of the glucose transporter GLUT4". Nature Reviews Molecular Cell Biology 3 (4): 267–77. doi:10.1038/nrm782. PMID 11994746.
- Baumann MU, Deborde S, Illsley NP (2003). "Placental glucose transfer and fetal growth". Endocrine 19 (1): 13–22. doi:10.1385/ENDO:19:1:13. PMID 12583599.
- Olson AL, Knight JB (2004). "Regulation of GLUT4 expression in vivo and in vitro". Front. Biosci. 8 (1-3): s401–09. doi:10.2741/1072. PMID 12700047.
- McCarthy AM, Elmendorf JS (2007). "GLUT4's itinerary in health & disease". Indian J. Med. Res. 125 (3): 373–88. PMID 17496362.
- Buse JB, Yasuda K, Lay TP et al. (1992). "Human GLUT4/muscle-fat glucose-transporter gene. Characterization and genetic variation". Diabetes 41 (11): 1436–45. doi:10.2337/diabetes.41.11.1436. PMID 1397719.
- O'Rahilly S, Krook A, Morgan R et al. (1992). "Insulin receptor and insulin-responsive glucose transporter (GLUT 4) mutations and polymorphisms in a Welsh type 2 (non-insulin-dependent) diabetic population". Diabetologia 35 (5): 486–89. doi:10.1007/BF02342449. PMID 1521731.
- Liu ML, Olson AL, Moye-Rowley WS et al. (1992). "Expression and regulation of the human GLUT4/muscle-fat facilitative glucose transporter gene in transgenic mice". J. Biol. Chem. 267 (17): 11673–36. PMID 1601840.
- Choi WH, O'Rahilly S, Buse JB et al. (1992). "Molecular scanning of insulin-responsive glucose transporter (GLUT4) gene in NIDDM subjects". Diabetes 40 (12): 1712–18. doi:10.2337/diabetes.40.12.1712. PMID 1756912.
- Kusari J, Verma US, Buse JB et al. (1991). "Analysis of the gene sequences of the insulin receptor and the insulin-sensitive glucose transporter (GLUT-4) in patients with common-type non-insulin-dependent diabetes mellitus". J. Clin. Invest. 88 (4): 1323–30. doi:10.1172/JCI115437. PMC 295602. PMID 1918382.
- Fukumoto H, Kayano T, Buse JB et al. (1989). "Cloning and characterization of the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin-responsive tissues". J. Biol. Chem. 264 (14): 7776–79. PMID 2656669.
- Chiaramonte R, Martini R, Taramelli R, Comi P (1993). "Identification of the 5' end of the gene encoding a human insulin-responsive glucose transporter". Gene 130 (2): 307–08. doi:10.1016/0378-1119(93)90438-9. PMID 7916714.
- Verhey KJ, Birnbaum MJ (1994). "A Leu-Leu sequence is essential for COOH-terminal targeting signal of GLUT4 glucose transporter in fibroblasts". J. Biol. Chem. 269 (4): 2353–56. PMID 8300557.
- Lee W, Samuel J, Zhang W et al. (1997). "A myosin-derived peptide C109 binds to GLUT4-vesicles and inhibits the insulin-induced glucose transport stimulation and GLUT4 recruitment in rat adipocytes". Biochem. Biophys. Res. Commun. 240 (2): 409–14. doi:10.1006/bbrc.1997.7671. PMID 9388492.
- Shi Y, Samuel SJ, Lee W et al. (1999). "Cloning of an L-3-hydroxyacyl-CoA dehydrogenase that interacts with the GLUT4 C-terminus". Arch. Biochem. Biophys. 363 (2): 323–32. doi:10.1006/abbi.1998.1088. PMID 10068455.
- Abel ED, Kaulbach HC, Tian R et al. (2000). "Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart". J. Clin. Invest. 104 (12): 1703–14. doi:10.1172/JCI7605. PMC 409881. PMID 10606624.
- Abel ED, Peroni O, Kim JK et al. (2001). "Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver". Nature 409 (6821): 729–33. doi:10.1038/35055575. PMID 11217863.
External links
- GLUT4 Protein at the US National Library of Medicine Medical Subject Headings (MeSH)
- USCD—Nature molecule pages: The signaling pathway", "GLUT4"; contains a high-resolution network map. Accessed 25 December 2009.
Membrane proteins, carrier proteins: membrane transport proteins solute carrier (TC 2A)
|
|
|
|
Ion pumps
|
|
Symporter, Cotransporter |
- Na+/K+,l-
- Na/Pi3
- Na+/Cl-
- Na/glucose
- Na+/I-
- Cl-/K+
|
|
Antiporter (exchanger) |
- Na+/H+
- Na+/Ca2+
- Na+/(Ca2+-K+) - Cl-/HCO3- (Band 3)
- Cl-formate exchanger
- Cl-oxalate exchanger
|
|
|
|
see also solute carrier disorders
Index of cells
|
|
Description |
- Structure
- Organelles
- peroxisome
- cytoskeleton
- centrosome
- epithelia
- cilia
- mitochondria
- Membranes
- Membrane transport
- ion channels
- vesicular transport
- solute carrier
- ABC transporters
- ATPase
- oxidoreduction-driven
|
|
Disease |
- Structural
- peroxisome
- cytoskeleton
- cilia
- mitochondria
- nucleus
- scleroprotein
- Membrane
- channelopathy
- solute carrier
- ATPase
- ABC transporters
- other
- extracellular ligands
- cell surface receptors
- intracellular signalling
- Vesicular transport
- Pore-forming toxins
|
|
|