CCR5 receptor (yellow) in cell membrane (grey)
Attachment of HIV to a CD4+ T-helper cell: 1) the gp120 viral protein attaches to CD4. 2) gp120 variable loop attaches to a coreceptor, either CCR5 or CXCR4. 3) HIV enters the cell.
C-Cケモカイン・レセプター5(C-C chemokine receptor type 5)は、CCR5あるいは、CD195とも呼ばれる膜タンパク質である[1][2] [3]。 ヒトでは、CCR5タンパク質をコードするCCR5遺伝子は、第3染色体短腕(p)21領域に配置されている [4] 。この膜タンパク質は、白血球表面に存在し、ケモカインの受容体として機能することで免疫系に関与している。即ち、T細胞が特定の組織および器官をターゲットに引き付けられるプロセスに関係する[1][2]。
ヒトにおいて、CCR5はHIV感染の機序に強く関与している。多くのHIV株が、宿主細胞に入り感染するための最初の段階でCCR5を利用している。 [5] [6] [7] [8]。
CCR5の遺伝子にCCR5-Δ32として知られている変異を持つ集団がいる。この突然変異のホモ接合体のキャリアである人々は、CCR5 指向性(従来いわれるところの「マクロファージ指向性」)のHIV-1感染に耐性を持つ[9] [10] [11] [12] [13] [14] [15]。
機能
CCR5タンパク質は内在性膜タンパク質であり、βケモカイン受容体ファミリーに属する。CCR5タンパク質は、CCケモカイン群こ対するケモカイン受容体として機能するGタンパク質共役型受容体である[1]。
この受容体に結合する天然のケモカインリガンドには、RANTES(CCL5としても知られている走化性サイトカインタンパク質、マクロファー炎症性タンパク質(MIP)1αおよび1β(それぞれCCL3およびCCL4としても知られている)がある。また、CCL3Llと相互作用するCCR5は、主にT細胞,マクロファージ,樹状細胞,小膠細胞上に発現している。
正常な免疫機能におけるCCR5のの正確な役割は不明であるが、CCR5は感染に対する炎症応答に対して役割を果たしている可能性がある。
HIV感染との関係
ヒトにおいて、CCR5はHIV感染の機序に強く関与している。多くのHIV株が、宿主細胞に入り感染するための最初の段階でCCR5を利用している。CCR5の遺伝子にCCR5-Δ32として知られている変異を持つ集団がいる。この突然変異のホモ接合体のキャリアである人々は、マクロファージ指向性(M-tropic)のHIV-1感染に耐性を持つ[9] [10] [11] [12] [13] [14] [15]。
脚注
注釈
参考文献
- ^ a b c Genetics Home Reference
- ^ a b Samson M, Labbe O, Mollereau C, Vassart G, Parmentier M (March 1996). "Molecular cloning and functional expression of a new human CC-chemokine receptor gene". Biochemistry 35 (11): 3362–7. doi:10.1021/bi952950g. PMID 8639485.
- ^ エイズ関連用語集[1]
- ^ NCBI Gene ID: 1234, updated on 17-Mar-2014 [2]
- ^ 山本 浩之, 俣野 哲朗;「HIV-1ワクチン開発への感染免疫学」ウイルス Vol. 57 (2007) No. 2 P 133-139 [3]
- ^ HIV感染症治療研究会(編);HIV感染症「治療の手引き」第17版(2013/12) [4]P25
- ^ 大島 泰郎,他;「生化学辞典」東京化学同人; 第4版 (2007/12/10)
- ウイルス受容体 P152
- ケモカイン,ケモカイン受容体 PP450-451
- マクロファージ炎症性タンパク質 P1310
- HIV P1078
- ^ メルクマニュアルによるHIVの解説 日本語版[5], 英語版[6]
- ^ a b Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M; Libert; Doranz; Rucker; Liesnard; Farber; Saragosti; Lapouméroulie; Cognaux; Forceille; Muyldermans; Verhofstede; Burtonboy; Georges; Imai; Rana; Yi; Smyth; Collman; Doms; Vassart; Parmentier (August 1996). "Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene". Nature 382 (6593): 722–5. Bibcode:1996Natur.382..722S. doi:10.1038/382722a0. PMID 8751444.
- ^ a b Liu R, Paxton WA, Choe S, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 1996;86:367-377
- ^ a b Gero Hütter et al. Long-Term Control of HIV by CCR5 Delta32/ Delta32 Stem-Cell Transplantation N Engl J Med 2009;360;692-698
- ^ a b Allers K, Hutter G, Hofmann J, et al. Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation. Blood 2011;117:2791-2799
- ^ a b Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014;370:901-910
- ^ a b Anjie Zhen and Scott Kitchen. Stem-Cell-Based Gene Therapy for HIV Infection Viruses 2014, 6, 1-12; doi:10.3390/v6010001
- ^ a b Mark A. Kay,and Bruce D. Walker. Engineering Cellular Resistance to HIV N Engl J Med 2014;370;968-969
関連項目
- 後天性免疫不全症候群
- 侵入阻害剤
- CCR5拮抗薬
- HIV,ウイルス,レトロウイルス
- ケモカイン
- 膜タンパク
- 共受容体,受容体
- ホモ接合体,ヘテロ接合体
Chemokine (C-C motif) receptor 5 (gene/pseudogene) |
PDB rendering based on 1poz. |
Available structures |
PDB |
Ortholog search: PDBe, RCSB |
List of PDB id codes |
1ND8, 1NE0, 1OPN, 1OPT, 1OPW, 2L87, 2RLL, 2RRS, 4MBS
|
|
|
Identifiers |
Symbols |
CCR5 ; CC-CKR-5; CCCKR5; CCR-5; CD195; CKR-5; CKR5; CMKBR5; IDDM22 |
External IDs |
OMIM: 601373 MGI: 88338 HomoloGene: 37325 GeneCards: CCR5 Gene |
Gene ontology |
Molecular function |
• actin binding
• phosphatidylinositol phospholipase C activity
• chemokine receptor activity
• protein binding
• coreceptor activity
• C-C chemokine receptor activity
• C-C chemokine binding
• chemokine (C-C motif) ligand 5 binding
|
Cellular component |
• cytoplasm
• endosome
• plasma membrane
• integral component of plasma membrane
• external side of plasma membrane
• cell surface
|
Biological process |
• MAPK cascade
• dendritic cell chemotaxis
• calcium ion transport
• chemotaxis
• inflammatory response
• immune response
• cellular defense response
• cell surface receptor signaling pathway
• G-protein coupled receptor signaling pathway
• positive regulation of cytosolic calcium ion concentration
• cell-cell signaling
• release of sequestered calcium ion into cytosol by sarcoplasmic reticulum
• viral process
• calcium-mediated signaling
• signaling
• entry into host cell
• chemokine-mediated signaling pathway
• response to cholesterol
• cellular response to lipopolysaccharide
|
Sources: Amigo / QuickGO |
|
RNA expression pattern |
|
|
|
More reference expression data |
Orthologs |
Species |
Human |
Mouse |
|
Entrez |
1234 |
12774 |
|
Ensembl |
ENSG00000160791 |
ENSMUSG00000079227 |
|
UniProt |
P51681 |
P51682 |
|
RefSeq (mRNA) |
NM_000579 |
NM_009917 |
|
RefSeq (protein) |
NP_000570 |
NP_034047 |
|
Location (UCSC) |
Chr 3:
46.41 – 46.42 Mb |
Chr 9:
124.12 – 124.15 Mb |
|
PubMed search |
[1] |
[2] |
|
|
CCR5 receptor (yellow) in cell membrane (grey)
Attachment of HIV to a CD4+ T-helper cell: 1) the gp120 viral protein attaches to CD4. 2) gp120 variable loop attaches to a coreceptor, either CCR5 or CXCR4. 3) HIV enters the cell.
C-C chemokine receptor type 5, also known as CCR5 or CD195, is a protein on the surface of white blood cells that is involved in the immune system as it acts as a receptor for chemokines. This is the process by which T cells are attracted to specific tissue and organ targets. Many forms of HIV, the virus that causes AIDS, initially use CCR5 to enter and infect host cells. A few individuals carry a mutation known as CCR5-Δ32 in the CCR5 gene, protecting them against these strains of HIV.
In humans, the CCR5 gene that encodes the CCR5 protein is located on the short (p) arm at position 21 on chromosome 3. Certain populations have inherited the Delta 32 mutation resulting in the genetic deletion of a portion of the CCR5 gene. Homozygous carriers of this mutation are resistant to M-tropic strains of HIV-1 infection.[1][2][3][4][5][6]
Contents
- 1 Function
- 2 HIV
- 3 CCR5-Δ32
- 4 See also
- 5 References
- 6 Further reading
- 7 External links
Function
The CCR5 protein belongs to the beta chemokine receptors family of integral membrane proteins.[7][8] It is a G protein-coupled receptor[7] which functions as a chemokine receptor in the CC chemokine group.
The natural chemokine ligands that bind to this receptor are RANTES (a chemotactic cytokine protein also known as CCL5)[9][10][11] and macrophage inflammatory protein (MIP) 1α and 1β (also known as CCL3 and CCL4, respectively). A computationally derived structure of CCL5 (RANTES) in complex with CCR5 is reported in.[12] The CCL5 : CCR5 structure is in excellent agreement with experimental findings and clarifies the functional role of CCL5 and CCR5 residues which are associated with binding and signaling.[12] It also interacts with CCL3L1.[10][13]
CCR5 is predominantly expressed on T cells, macrophages, dendritic cells, eosinophils and microglia. It is likely that CCR5 plays a role in inflammatory responses to infection, though its exact role in normal immune function is unclear.
HIV
Further information: HIV tropism and Entry inhibitor
HIV most commonly uses CCR5 and/or CXCR4 as a co-receptor to enter its target cells. Several chemokine receptors can function as viral coreceptors, but CCR5 is likely the most physiologically important coreceptor during natural infection. Molecular Dynamics simulations delineated the binding of a specific dual-tropic HIV-1 gp120 V3 loop to CCR5;[14] the computationally derived complex structure exhibits exceptional agreement with previous experimental findings and sheds light into the functional role of HIV-1 gp120 V3 loop and CCR5 residues associated with the HIV-1 coreceptor activity.[14] The normal ligands for this receptor, RANTES, MIP-1β, and MIP-1α, are able to suppress HIV-1 infection in vitro. The blocking mechanism of HIV-1 by RANTES was described in 2014.[12] A comparison between the CCL5 (RANTES) : CCR5 [12] and the HIV-1 gp120 V3 loop : CCR5 [14] complex structures depicts that both RANTES and the virus primarily interact with the same CCR5 residues. In individuals infected with HIV, CCR5-using viruses are the predominant species isolated during the early stages of viral infection,[15] suggesting that these viruses may have a selective advantage during transmission or the acute phase of disease. Moreover, at least half of all infected individuals harbor only CCR5-using viruses throughout the course of infection.
A number of new experimental HIV drugs, called CCR5 receptor antagonists, have been designed to interfere with the interaction between CCR5 and HIV, including PRO140 (Progenics), Vicriviroc(Phase III trials were cancelled in July 2010) (Schering Plough), Aplaviroc (GW-873140) (GlaxoSmithKline) and Maraviroc (UK-427857) (Pfizer). The blocking mechanism of HIV-1 by Maraviroc was proposed in 2014.[14] A problem of this approach is that, while CCR5 is the major co-receptor by which HIV infects cells, it is not the only such co-receptor. It is possible that under selective pressure HIV will evolve to use another co-receptor. However, examination of viral resistance to AD101, molecular antagonist of CCR5, indicated that resistant viruses did not switch to another coreceptor (CXCR4) but persisted in using CCR5, either through binding to alternative domains of CCR5, or by binding to the receptor at a higher affinity.
CCR5-Δ32
CCR5-Δ32 (or CCR5-D32 or CCR5 delta 32) is an allele of CCR5.[16][17]
CCR5-Δ32 is a deletion mutation of a gene that has a specific impact on the function of T cells.[18] The deleted portion of the CCR5 gene consists of thirty-two base pairs that correspond to the second extracellular loop of the receptor; the mutated receptor is non-functional and does not allow M-tropic HIV-1 virus entry, thus resulting in infection resistance.[19] One study found the frequency of the CCR5-Δ32 allele among the Caucasian population in the United States to be 0.10.[20] Another study found the allele frequency to be 0.01 for those of Western European descent; the CCR5-Δ32 allele frequency was much lower in a sampling from Venezuela.[19] A third found the frequency of the mutant allele in Caucasians of European descent to be 0.092. The same study examined DNA samples from several Western and Central African countries as well as Japan; no mutant alleles were found.[21] At least one copy of CCR5-Δ32 is found in about 4–16% of people of European descent. It has been speculated that this allele was favored by natural selection during the Black Death for Northern Europeans, but further research has revealed that the gene did not protect against the Black Death.[22] The current hypothesis is of protection vs smallpox throughout Europe,[22] especially in the major trade cities and in isolated islands and archipelagos, such as Iceland and the Azores.[23]
In the ancient world in areas such as Corinth in Ancient Greece, prostitution may have led to infection, since a virus similar to HIV existed which had flu-like symptoms and later continued to weaken the immune system of those infected. It was at the time not known how it was spread but the Plague of Athens and many later diseases in the Balkans may have also influenced the genetic mutations.[24] This coalescence date is contradicted by supported evidence of CCR5-Δ32 in Bronze Age samples, at levels comparable to the modern European population.[25] Smallpox may be another candidate for the high level of the mutation in the European population.[16] The highest frequency of the mutation exists in Ashkenazi Jews, with the overall frequency of the CCR5-Delta32 allele is elevated 13.7% on average.[26]
The allele has a negative effect upon T cell function, but appears to protect against smallpox and HIV. It has been shown in many studies that a few professional sex workers exposed frequently to HIV-1 are resistant to infection. Many showed reduced CD4 T cell activation which is associated with lower susceptibility to HIV-1 infection; CD4 T cells act as regulatory cells that, when activated, suppress immune response.[27] In those particular cases reduced T cell function resulted in the beneficial effect of protection against HIV infection. Yersinia pestis (the bubonic plague bacterium) was demonstrated in the laboratory not to associate with CCR5. Individuals with the Δ32 allele of CCR5 are healthy, suggesting that CCR5 is largely dispensable. However, CCR5 apparently plays a role in mediating resistance to West Nile virus infection in humans, as CCR5-Δ32 individuals have shown to be disproportionately at higher risk of West Nile virus in studies,[28] indicating that not all of the functions of CCR5 may be compensated by other receptors.
While CCR5 has multiple variants in its coding region, the deletion of a 32-bp segment results in a nonfunctional receptor, thus preventing HIV R5 entry; two copies of this allele provide strong protection against HIV infection.[29][21] This allele is found in 5–14% of Europeans but is rare in Africans and Asians.[30] CCR5-Δ32 decreases the number of CCR5 proteins on the outside of the CD4 cell, which can have a large effect on the HIV disease progression rates. Multiple studies of HIV-infected persons have shown that presence of one copy of this allele delays progression to the condition of AIDS by about two years. Immune activation and T cell function also significantly affect the development of AIDS. Studies done on primates have shown that species lacking immune activation did not develop AIDS while another species with strong T-cell activation did.[27] It is possible that a person with the CCR5-Δ32 receptor allele will not be infected with HIV R5 strains. One study found that homozygotes for the mutated allele were strongly resistant to HIV-1 infection, and heterozygotes showed showed some level of resistance.[21] One study found that several commercial testing companies offer tests for CCR5-Δ32.[31]
A genetic approach involving intrabodies that block CCR5 expression has been proposed as a treatment for HIV-1 infected individuals.[32] When T-cells modified so they no longer express CCR5 were mixed with unmodified T-cells expressing CCR5 and then challenged by infection with HIV-1, the modified T-cells that do not express CCR5 eventually take over the culture, as HIV-1 kills the non-modified T-cells. This same method might be used in vivo to establish a virus resistant cell pool in infected individuals.[32]
This hypothesis was tested in an AIDS patient who had also developed myeloid leukemia, and was treated with chemotherapy to suppress the cancer. A bone marrow transplant containing stem cells from a matched donor was then used to restore the immune system. However, the transplant was performed from a donor with 2 copies of CCR5-Δ32 mutation gene. After 600 days, the patient was healthy and had undetectable levels of HIV in the blood and in examined brain and rectal tissues.[2][33] Before the transplant, low levels of HIV X4, which does not use the CCR5 receptor, were also detected. Following the transplant, however, this type of HIV was not detected either, further baffling doctors.[2] However, this is consistent with the observation that cells expressing the CCR5-Δ32 variant protein lack both the CCR5 and CXCR4 receptors on their surfaces, thereby conferring resistance to a broad range of HIV variants including HIV X4.[34] After over six years, the patient has maintained the resistance to HIV and has been pronounced cured of the HIV infection.[3]
Enrollment of HIV-positive patients in a clinical trial was started in 2009 in which the patients' cells were genetically modified with a zinc finger nuclease to carry the CCR5-Δ32 trait and then reintroduced into the body as a potential HIV treatment.[35][36] Results reported in 2014 were promising.[6]
Further information: Long-term nonprogressors
See also
- Discovery and development of CCR5 receptor antagonists
- Entry inhibitor
- HIV tropism
- Stephen Crohn
- HIV immunity
References
- ^ de Silva E, Stumpf M (2004). "HIV and the CCR5-Delta32 resistance allele". FEMS Microbiol. Lett. 241 (1): 1–12. doi:10.1016/j.femsle.2004.09.040. PMID 15556703.
- ^ a b c Hütter G, Nowak D, Mossner M, Ganepola S, Müssig A, Allers K et al. (2009). "Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation". N. Engl. J. Med. 360 (7): 692–8. doi:10.1056/NEJMoa0802905. PMID 19213682.
- ^ a b Allers K, Hütter G, Hofmann J, Loddenkemper C, Rieger K, Thiel E et al. (2011). "Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation". Blood 117 (10): 2791–9. doi:10.1182/blood-2010-09-309591. PMID 21148083.
- ^ Zhen A, Kitchen S (2014). "Stem-cell-based gene therapy for HIV infection". Viruses 6 (1): 1–12. doi:10.3390/v6010001. PMC 3917429. PMID 24368413.
- ^ Kay M, Walker B (2014). "Engineering cellular resistance to HIV". N. Engl. J. Med. 370 (10): 968–9. doi:10.1056/NEJMe1400593. PMID 24597871.
- ^ a b Tebas P, Stein D, Tang W, Frank I, Wang S, Lee G et al. (2014). "Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV". N. Engl. J. Med. 370 (10): 901–10. doi:10.1056/NEJMoa1300662. PMID 24597865.
- ^ a b Genetics Home Reference
- ^ Samson M, Labbe O, Mollereau C, Vassart G, Parmentier M (March 1996). "Molecular cloning and functional expression of a new human CC-chemokine receptor gene". Biochemistry 35 (11): 3362–7. doi:10.1021/bi952950g. PMID 8639485.
- ^ Slimani H, Charnaux N, Mbemba E, Saffar L, Vassy R, Vita C et al. (October 2003). "Interaction of RANTES with syndecan-1 and syndecan-4 expressed by human primary macrophages". Biochim. Biophys. Acta 1617 (1-2): 80–8. doi:10.1016/j.bbamem.2003.09.006. PMID 14637022.
- ^ a b Struyf S, Menten P, Lenaerts J, Put W, D'Haese A, De Clercq E et al. (July 2001). "Diverging binding capacities of natural LD78beta isoforms of macrophage inflammatory protein-1alpha to the CC chemokine receptors 1, 3 and 5 affect their anti-HIV-1 activity and chemotactic potencies for neutrophils and eosinophils". Eur. J. Immunol. 31 (7): 2170–8. doi:10.1002/1521-4141(200107)31:7<2170::AID-IMMU2170>3.0.CO;2-D. PMID 11449371.
- ^ Proudfoot A, Fritchley S, Borlat F, Shaw J, Vilbois F, Zwahlen C et al. (April 2001). "The BBXB motif of RANTES is the principal site for heparin binding and controls receptor selectivity". J. Biol. Chem. 276 (14): 10620–6. doi:10.1074/jbc.M010867200. PMID 11116158.
- ^ a b c d Tamamis P, Floudas C (Jun 26, 2014). "Elucidating a key anti-HIV-1 and cancer-associated axis: the structure of CCL5 (Rantes) in complex with CCR5". Sci Rep 4: 5447. doi:10.1038/srep05447. PMID 24965094.
- ^ Miyakawa T, Obaru K, Maeda K, Harada S, Mitsuya H (February 2002). "Identification of amino acid residues critical for LD78beta, a variant of human macrophage inflammatory protein-1alpha, binding to CCR5 and inhibition of R5 human immunodeficiency virus type 1 replication". J. Biol. Chem. 277 (7): 4649–55. doi:10.1074/jbc.M109198200. PMID 11734558.
- ^ a b c d Tamamis P, Floudas C (Apr 24, 2014). "Molecular recognition of CCR5 by an HIV-1 gp120 V3 loop". PLoS ONE 9 (4): e95767. doi:10.1371/journal.pone.0095767. PMC 3999033. PMID 24763408.
- ^ Anderson J, Akkina R (2007). "Complete knockdown of CCR5 by lentiviral vector-expressed siRNAs and protection of transgenic macrophages against HIV-1 infection". Gene Ther. 14 (17): 1287–97. doi:10.1038/sj.gt.3302958. PMID 17597795.
- ^ a b Galvani A, Slatkin M (December 2003). "Evaluating plague and smallpox as historical selective pressures for the CCR5-Delta 32 HIV-resistance allele". Proc. Natl. Acad. Sci. U.S.A. 100 (25): 15276–9. Bibcode:2003PNAS..10015276G. doi:10.1073/pnas.2435085100. PMC 299980. PMID 14645720.
- ^ Stephens J, Reich D, Goldstein D, Shin H, Smith M, Carrington M et al. (June 1998). "Dating the origin of the CCR5-Delta32 AIDS-resistance allele by the coalescence of haplotypes". Am. J. Hum. Genet. 62 (6): 1507–15. doi:10.1086/301867. PMC 1377146. PMID 9585595.
- ^ Buseyne F, Janvier G, Teglas J, Ivanoff S, Burgard M, Bui E et al. (October 1998). "Impact of heterozygosity for the chemokine receptor CCR5 32-bp-deleted allele on plasma virus load and CD4 T lymphocytes in perinatally human immunodeficiency virus-infected children at 8 years of age". J. Infect. Dis. 178 (4): 1019–23. doi:10.1086/515660. PMID 9806029.
- ^ a b Liu R, Paxton W, Choe S, Ceradini D, Martin S, Horuk R et al. (1996). "Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection". Cell 86 (3): 367–77. doi:10.1016/S0092-8674(00)80110-5. PMID 8756719.
- ^ Dean M, Carrington M, Winkler C, Huttley G, Smith M, Allikmets R et al. (1996). "Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study". Science 273 (5283): 1856–62. doi:10.1126/science.273.5283.1856. PMID 8791590.
- ^ a b c Samson M, Libert F, Doranz B, Rucker J, Liesnard C, Farber C et al. (22 August 1996). "Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene". Nature 382 (6593): 722–5. doi:10.1038/382722a0. PMID 8751444.
- ^ a b Faure E, Royer-Carenzi M (December 2008). "Is the European spatial distribution of the HIV-1-resistant CCR5-Delta32 allele formed by a breakdown of the pathocenosis due to the historical Roman expansion?". Infect. Genet. Evol. 8 (6): 864–74. doi:10.1016/j.meegid.2008.08.007. PMID 18790087.
- ^ Freitas T, Brehm A, Fernandes A (December 2006). "Frequency of the CCR5-delta32 mutation in the Atlantic island populations of Madeira, the Azores, Cabo Verde, and São Tomé e Príncipe". Hum. Biol. 78 (6): 697–703. doi:10.1353/hub.2007.0011. PMID 17564248.
- ^ Mirko D. Grmek (March 1991). Diseases in the Ancient Greek World.
- ^ Hedrick P, Verrelli B (June 2006). ""Ground truth" for selection on CCR5-Delta32". Trends Genet. 22 (6): 293–6. doi:10.1016/j.tig.2006.04.007. PMID 16678299.
- ^ Lucotte G, Smets P (2003). "CCR5-Delta32 allele frequencies in Ashkenazi Jews". Genet. Test. 7 (4): 333–7. doi:10.1089/109065703322783716. PMID 15000812.
- ^ a b Shen R, Smith P (August 2014). "Mucosal correlates of protection in HIV-1-exposed sero-negative persons". Am. J. Reprod. Immunol. 72 (2): 219–27. doi:10.1111/aji.12202. PMID 24428610.
- ^ Glass W, McDermott D, Lim J, Lekhong S, Yu S, Frank W et al. (January 2006). "CCR5 deficiency increases risk of symptomatic West Nile virus infection". J. Exp. Med. 203 (1): 35–40. doi:10.1084/jem.20051970. PMC 2118086. PMID 16418398.
- ^ Duncan S, Scott S, Duncan C (March 2005). "Reappraisal of the historical selective pressures for the CCR5-Delta32 mutation". J. Med. Genet. 42 (3): 205–8. doi:10.1136/jmg.2004.025346. PMC 1736018. PMID 15744032. Lay summary – PhysOrg.com.
- ^ Sabeti P, Walsh E, Schaffner S, Varilly P, Fry B, Hutcheson H et al. (November 2005). "The case for selection at CCR5-Delta32". PLoS Biol. 3 (11): e378. doi:10.1371/journal.pbio.0030378. PMC 1275522. PMID 16248677.
- ^ "Delta32 Genetic Testing". Briefing paper for AFAO members. Australian Federation of AIDS Organisations. 2007-06-01. Retrieved 2011-01-22.
- ^ a b Steinberger P, Andris-Widhopf J, Bühler B, Torbett B, Barbas C (January 2000). "Functional deletion of the CCR5 receptor by intracellular immunization produces cells that are refractory to CCR5-dependent HIV-1 infection and cell fusion". Proc. Natl. Acad. Sci. U.S.A. 97 (2): 805–10. Bibcode:2000PNAS...97..805S. doi:10.1073/pnas.97.2.805. PMC 15412. PMID 10639161.
- ^ Schoofs M (2008-11-07). "A Doctor, a Mutation and a Potential Cure for AIDS". The Wall Street Journal. Retrieved 2010-12-15.
- ^ Agrawal L, Lu X, Qingwen J, VanHorn-Ali Z, Nicolescu I, McDermott D et al. (March 2004). "Role for CCR5Delta32 protein in resistance to R5, R5X4, and X4 human immunodeficiency virus type 1 in primary CD4+ cells". J. Virol. 78 (5): 2277–87. doi:10.1128/JVI.78.5.2277-2287.2004. PMC 369216. PMID 14963124.
- ^ "Autologous T-Cells Genetically Modified at the CCR5 Gene by Zinc Finger Nucleases SB-728 for HIV (Zinc-Finger)". U.S. National Institutes of Health. 2009-12-09. Retrieved 2009-12-30.
- ^ Wade, Nicholas (2009-12-28). "Zinc Fingers Could Be Key to Reviving Gene Therapy". The New York Times. Retrieved 2009-12-30.
Further reading
- Wilkinson D (1996). "Cofactors provide the entry keys. HIV-1". Curr. Biol. 6 (9): 1051–3. doi:10.1016/S0960-9822(02)70661-1. PMID 8805353.
- Broder C, Dimitrov D (1996). "HIV and the 7-transmembrane domain receptors". Pathobiology 64 (4): 171–9. doi:10.1159/000164032. PMID 9031325.
- Choe H, Martin K, Farzan M, Sodroski J, Gerard N, Gerard C (1998). "Structural interactions between chemokine receptors, gp120 Env and CD4". Semin. Immunol. 10 (3): 249–57. doi:10.1006/smim.1998.0127. PMID 9653051.
- Sheppard H, Celum C, Michael N, O'Brien S, Dean M, Carrington M et al. (2002). "HIV-1 infection in individuals with the CCR5-Delta32/Delta32 genotype: acquisition of syncytium-inducing virus at seroconversion". J. Acquir. Immune Defic. Syndr. 29 (3): 307–13. doi:10.1097/00042560-200203010-00013. PMID 11873082.
- Freedman B, Liu Q, Del Corno M, Collman R (2003). "HIV-1 gp120 chemokine receptor-mediated signaling in human macrophages". Immunol. Res. 27 (2-3): 261–76. doi:10.1385/IR:27:2-3:261. PMID 12857973.
- Esté J (2003). "Virus entry as a target for anti-HIV intervention". Curr. Med. Chem. 10 (17): 1617–32. doi:10.2174/0929867033457098. PMID 12871111.
- Gallo S, Finnegan C, Viard M, Raviv Y, Dimitrov A, Rawat S et al. (2003). "The HIV Env-mediated fusion reaction". Biochim. Biophys. Acta 1614 (1): 36–50. doi:10.1016/S0005-2736(03)00161-5. PMID 12873764.
- Zaitseva M, Peden K, Golding H (2003). "HIV coreceptors: role of structure, posttranslational modifications, and internalization in viral-cell fusion and as targets for entry inhibitors". Biochim. Biophys. Acta 1614 (1): 51–61. doi:10.1016/S0005-2736(03)00162-7. PMID 12873765.
- Lee C, Liu Q, Tomkowicz B, Yi Y, Freedman B, Collman R (2003). "Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited signaling pathways". J. Leukoc. Biol. 74 (5): 676–82. doi:10.1189/jlb.0503206. PMID 12960231.
- Yi Y, Lee C, Liu Q, Freedman B, Collman R (2004). "Chemokine receptor utilization and macrophage signaling by human immunodeficiency virus type 1 gp120: Implications for neuropathogenesis". J. Neurovirol. 10 Suppl 1: 91–6. doi:10.1080/753312758. PMID 14982745.
- Seibert C, Sakmar T (2004). "Small-molecule antagonists of CCR5 and CXCR4: a promising new class of anti-HIV-1 drugs". Curr. Pharm. Des. 10 (17): 2041–62. doi:10.2174/1381612043384312. PMID 15279544.
- Cutler C, Jotwani R (2006). "Oral mucosal expression of HIV-1 receptors, co-receptors, and alpha-defensins: tableau of resistance or susceptibility to HIV infection?". Adv. Dent. Res. 19 (1): 49–51. doi:10.1177/154407370601900110. PMID 16672549.
- Ajuebor M, Carey J, Swain M (2006). "CCR5 in T cell-mediated liver diseases: what's going on?". J. Immunol. 177 (4): 2039–45. doi:10.4049/jimmunol.177.4.2039. PMID 16887960.
- Lipp M, Müller G (2003). "Shaping up adaptive immunity: the impact of CCR7 and CXCR5 on lymphocyte trafficking". Verh Dtsch Ges Pathol 87: 90–101. PMID 16888899.
- Balistreri C, Caruso C, Grimaldi M, Listì F, Vasto S, Orlando V et al. (2007). "CCR5 receptor: biologic and genetic implications in age-related diseases". Ann. N. Y. Acad. Sci. 1100: 162–72. Bibcode:2007NYASA1100..162B. doi:10.1196/annals.1395.014. PMID 17460174.
- Madsen H, Poulsen K, Dahl O, Clark B, Hjorth J (1990). "Retropseudogenes constitute the major part of the human elongation factor 1 alpha gene family". Nucleic Acids Res. 18 (6): 1513–6. doi:10.1093/nar/18.6.1513. PMC 330519. PMID 2183196.
- Uetsuki T, Naito A, Nagata S, Kaziro Y (1989). "Isolation and characterization of the human chromosomal gene for polypeptide chain elongation factor-1 alpha". J. Biol. Chem. 264 (10): 5791–8. PMID 2564392.
- Whiteheart S, Shenbagamurthi P, Chen L, Cotter R, Hart G (1989). "Murine elongation factor 1 alpha (EF-1 alpha) is posttranslationally modified by novel amide-linked ethanolamine-phosphoglycerol moieties. Addition of ethanolamine-phosphoglycerol to specific glutamic acid residues on EF-1 alpha". J. Biol. Chem. 264 (24): 14334–41. PMID 2569467.
- Ann D, Wu M, Huang T, Carlson D, Wu R (1988). "Retinol-regulated gene expression in human tracheobronchial epithelial cells. Enhanced expression of elongation factor EF-1 alpha". J. Biol. Chem. 263 (8): 3546–9. PMID 3346208.
- Brands J, Maassen J, van Hemert F, Amons R, Möller W (1986). "The primary structure of the alpha subunit of human elongation factor 1. Structural aspects of guanine-nucleotide-binding sites". Eur. J. Biochem. 155 (1): 167–71. doi:10.1111/j.1432-1033.1986.tb09472.x. PMID 3512269.
External links
- Video and text from a PBS documentary about the discovery of CCR5
- "Chemokine Receptors: CCR5". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology.
- HuGENavigator literature on HIV Infections and CCR5 from CDC - (note, authors may not be CDC employees, and there is no public domain notice on the page, so this cannot be assumed to be public domain)
- Schering-Plough Initiates Phase III Studies with CCR5-Vicriviroc in Treatment- Experienced HIV Patients.
- HIVcoPred A server for prediction of HIV coreceptor usage (CCR5). PLoS ONE 8(4): e61437