算術平均(さんじゅつへいきん[1]、英: arithmetic mean)または相加平均(そうかへいきん[2])とは、広義の平均の中で最も代表的な値のことで、数の集合やデータ、確率分布に対して、個数と合計を保ったまま均一に1つの値に代表させた(つまり均した)値のことである。統計学においてだけでなく、数学のその他の分野、物理学[3]、経済学、社会学、歴史学などあらゆる学問分野で算術平均が使われている。
例えば、国内総生産を人口で割った算術平均からその国民の平均収入を推定することができる。
数学などでは、幾何平均や調和平均などの他の広義の平均と区別するため、区別が必要な場合は算術平均または相加平均と呼ばれる。特に統計学では、データ(母集団、標本)の代表値の一つであり、他の広義平均との区別が明らかであれば平均値と呼ばれる。
上記の平均年収の例を見ても分かるように、算術平均を代表値として使う場合には、ロバスト統計量ではないことに注意が必要である。外れ値の影響を大きく受ける。特に歪度の大きい分布では算術平均は最大値と最小値の「真ん中」から外れることがあり、中央値などのロバスト統計量の方が代表値としてふさわしい場合がある。
標準偏差や相関係数を定義するために、算術平均は必要な概念となる。
定義
数の集合、またはデータ(母集団、標本)を考えるとき、それがとる値全体を a1, a2, …, an とすると、その算術平均 m は次の式で定義される。
統計学における平均値
統計学においては、他の広義の平均(幾何平均、調和平均など)と区別されることがことわりなくても明らかである場合は、算術平均は単に「平均値」と呼ばれる。平均値を考える対象が何であるかによって呼称と表記が異なる。
データの平均値
変量 x のデータの平均値を で表す。
標本調査における平均値
母集団の平均を母平均 (population mean)、標本の平均は標本平均 (sample mean) と呼ぶ。母平均を μ、標本平均を m などと書いて区別する。
確率分布の平均
確率分布に対して、その確率変数が離散型である場合は、データの平均値と同様に平均(期待値)が定義される。
「期待値#離散型確率変数」も参照
確率空間 (Ω, F, P) において、確率変数 X が高々可算個 x1, x2, … を取るとき(離散型確率変数)、X の期待値 E[X] は
で定義される。
特に確率変数のとりうる値が有限個であるとき、この定義は#データの平均値の定義と同じである。
連続型確率分布の平均については「期待値#連続型確率変数」を参照
動機となる属性
算術平均には、代表値として用いるのに適した次のような属性がある。
- の算術平均を とすると、偏差の総和(合計)は必ず 0 になる:
- この等式は、力学的には次のような意味になる:データの値 ak を横軸、度数を縦軸とするヒストグラムを作成すると、ヒストグラムの形をした物体の重心は平均値 m が表す点の上にある。
- 数 に対して、データの値との差の平方の総和 をとる関数を考えるとき、この関数はデータの算術平均値 (のみ)で最小となる。
- 正規分布などの左右対称な確率分布においては、平均値は中央値と等しくなる。
算術平均と中央値
算術平均は、多くの場合に中央値とは異なる。例えば、標本空間 {1,2,3,4} の算術平均は2.5であり、中央値と一致する。しかし {1,2,4,8,16} のように偏った標本空間では中央値と算術平均は大きく異なる。この場合の算術平均は6.2だが、中央値は4である。算術平均と中央値との差は、その標本空間の偏りを表している。
この性質は経済学などで応用されている。例えば1980年代以降のアメリカ合衆国では、収入の中央値は収入の算術平均より低く、その差は広がり続けている。これは貧富の差が広がっていることを意味する[4]。
角度
詳細は「方向統計学」を参照
位相や角度などの周期的データを扱う場合は、特別な配慮が必要である。1°と 359°の単純な算術平均は 180°になってしまうが、これは2つの意味で正しくない。
- 角度の値は360°(単位がラジアンの場合は 2π)の剰余として定義される。したがって、1°と 359°を、1°と −1°とみなすこともできるし、1°と 719°とみなすこともでき、それぞれの単純な算術平均は異なる。
- この例では 0°(または 360°)が幾何学的により良い「平均」であり、これの方がばらつきが小さい。
一般にこのような場合に単純に算術平均を求めると、平均値が値の範囲の中央付近になる傾向がある。これを防ぐには、ばらつきが最小となるような点を平均値とし、円周上の2点の角度の小さい方を2点の角度とするよう再定義する。
一般の代数系への拡張
算術平均は加法とスカラー倍が定義された数(実数、複素数、ベクトル[要曖昧さ回避]等)に対して定義できる。
例えば、n本のベクトル x1, …, xn に対して、その算術平均は
となる。
特に n = 3 の場合、 となり、これは x1, x2, x3 が表す点を頂点とする三角形の重心の位置ベクトルに等しい。
一般には、 は x1, …, xn を頂点とするn単体の重心の位置ベクトルである。
脚注・出典
- ^ 金融・経済用語辞典. “算術平均とは”. 2011年4月13日閲覧。
- ^ 相加平均とは - コトバンク
- ^ 伏見康治「確率論及統計論」第 VII 章 確率と統計 63節 算術平均、標準偏差 p.413 https://ci.nii.ac.jp/naid/110002452602
- ^ ベン・バーナンキ. “The Level and Distribution of Economic Well-Being”. 2010年7月23日閲覧。
参考文献
- ダレル・ハフ、How to lie with statistics, Victor Gollancz, 1954 (ISBN 0-393-31072-8).
関連項目
- 平均
- 幾何平均
- 中央値
- 最頻値
- 期待値
- 標準偏差
- 要約統計量
外部リンク
- Calculations and comparisons between arithmetic and geometric mean of two numbers
- Mean or Average
- Weisstein, Eric W. "Arithmetic Mean". MathWorld (英語).
統計学 |
---|
標本調査 | |
---|
記述統計学 |
連続データ |
位置 | |
---|
分散 |
- 範囲
- 偏差
- 偏差値
- 標準偏差
- 標準誤差
- 変動係数
- 決定係数
- 相関係数
- 自己相関
- 共分散
- 自己共分散
- 分散共分散行列
- 百分率
- 統計的ばらつき
|
---|
モーメント | |
---|
|
---|
カテゴリデータ | |
---|
|
---|
推計統計学 |
仮説検定 |
パラメトリック |
- t検定
- ウェルチのt検定
- F検定
- Z検定
- 二項検定
- ジャック–ベラ検定
- シャピロ–ウィルク検定
- 分散分析
- 共分散分析
|
---|
ノンパラメトリック |
- ウィルコクソンの符号順位検定
- マン・ホイットニーのU検定
- カイ二乗検定
- イェイツのカイ二乗検定
- 累積カイ二乗検定
- フィッシャーの正確確率検定
- 尤度比検定
- G検定
- アンダーソン–ダーリング検定
- コルモゴロフ–スミルノフ検定
- カイパー検定
- マンテル検定
- コクラン・マンテル・ヘンツェルの統計量
|
---|
その他 | |
---|
|
---|
区間推定 | |
---|
モデル選択基準 | |
---|
その他 |
- 偏り
- 偏りと分散
- 過剰適合
- 推定量
- 点推定
- 最尤推定
- 尤度関数
- 尤度方程式
- 最小距離推定
- メタアナリシス
- ブートストラップ法
|
---|
|
---|
ベイズ統計学 |
確率 |
- 主観確率
- ベイズ確率
- 事前確率
- 事後確率
- 最大事後確率
|
---|
その他 | |
---|
|
---|
相関 |
- 交絡変数
- ピアソンの積率相関係数
- 順位相関(スピアマンの順位相関係数・ケンドールの順位相関係数)
|
---|
モデル |
- 一般線形モデル
- 一般化線形モデル
- 混合モデル
- 一般化線形混合モデル
|
---|
回帰 |
線形 |
- 線形回帰
- リッジ回帰
- ラッソ回帰
- エラスティックネット
|
---|
非線形 |
- k近傍法
- 回帰木
- ランダムフォレスト
- ニューラルネットワーク
- サポートベクター回帰
- 射影追跡回帰
|
---|
時系列 |
- 自己回帰モデル
- 自己回帰移動平均モデル
- ARCHモデル
- 対移動平均比率法
- トレンド定常
- 傾向推定
- 共和分
- 構造変化
|
---|
|
---|
分類 |
線形 |
- 線形判別分析
- ロジスティック回帰
- 単純ベイズ分類器
- 単純パーセプトロン
- 線形サポートベクターマシン
|
---|
二次 | |
---|
非線形 |
- k近傍法
- 決定木
- ランダムフォレスト
- ニューラルネットワーク
- サポートベクターマシン
- ベイジアンネットワーク
- 隠れマルコフモデル
|
---|
その他 | |
---|
|
---|
教師なし学習 |
|
---|
統計図表 |
- 棒グラフ
- バイプロット(英語版)
- 箱ひげ図
- 管理図
- フォレストプロット
- ヒストグラム
- 円グラフ
- Q-Qプロット
- ランチャート
- 散布図
- 幹葉図
- バイオリン図
- ドットプロット
- ヒートマップ
- 階級区分図
|
---|
生存時間分析 |
- 生存時間関数
- カプラン=マイヤー推定量
- ログランク検定
- 故障率
- 比例ハザードモデル
|
---|
歴史 | |
---|
応用 |
- 社会統計学
- 疫学
- 生物統計学
- 統計力学
- 計量経済学
- 機械学習
- 実験計画法
|
---|
出版物 | |
---|
その他 | |
---|
全般 | |
---|
|
典拠管理 |
- GND: 4143009-8
- MA: 91851964
|
---|