- 英
- inductive statistics、stochastics
Wikipedia preview
出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2016/01/12 03:13:29」(JST)
[Wiki ja表示]
推計統計学(すいけいとうけいがく、inferential statistics)とは、無作為抽出された部分集団(抽出集団、標本集団)から抽出元全体(母集団)の特徴、性質を推定する統計学の分野を言う。推測統計学または推計学とも呼ばれる。
目次
- 1 概要
- 2 点推定
- 3 区間推定
- 4 仮説検定
- 5 教材
- 6 参考文献
概要
19世紀後半から20世紀初頭にかけて発達した統計学は記述統計学(descriptive statistics)と呼ばれる。集団の規則性を求めることが統計学の目的であるが、記述統計学においては集団の規則性は大量の標本を観察することによってのみ発見することができるものだと考えられていた。そのため、記述統計学は資源が限られているなどの条件により少数の標本しか得られない現象について、その帰属する母集団の規則性を求めることができなかった。そのような事例に対応するために発達したのが推計統計学(inferential statistics)である。
統計学的推測は
に細分される。 抽出集団から母集団を推定するため、抜き取り調査による品質管理や疫学調査の基礎となる学問である。
なお、近代以降の推計統計学理論は、母集団を規定する量=パラメータ(母数)を既定の固定値としてそれを推定するという方針に基づき発展を遂げてきたが、最近では、それに対し、パラメータを推定するにあたっての不確実性を確率変数として表現するベイズ統計学が注目されている。
点推定
抽出集団のデータを用いて母集団の分布を表現するパラメータを点として推定すること。
正規分布の場合、平均値と標準偏差の二つのパラメータで分布が表現される。 通常、推定値は記号に「^」をつける。 推定標準偏差は標本分散ではなく不偏分散を用いる(記事「標準偏差」を参照)。 標本数をnとすると、推定平均値と推定標準偏差は以下の式で算出される。
母集団が歪んでいる場合など、平均値で対称になっていない場合、平均値を用いるよりも中央値や最頻値を用いたほうがその分布の特徴を捉えやすい場合がある。
区間推定
点推定で推定したパラメータのバラツキや信頼区間を示すこと。
正規分布の場合には標準誤差 (Standard Error, SE) を用いることが多い。平均値の標準誤差を特に SEM (standard error of the mean) と呼ぶ。 SEMは以下の式で算出される。
また、より具体的に信頼区間(95%信頼区間、99%信頼区間などが用いられる)を表示することもある。
仮説検定
区間推定値から、母集団が特定の分布に従っているかどうかを検証すること。
具体的には、データが特定の分布に従う母集団から抽出されたとする仮説を立て、この仮説の検定を行う。この仮説を帰無仮説(きむかせつ)という。たとえば、「抽出集団は、平均値50、標準偏差○の母集団から抽出されたものである。」、「抽出集団Aと抽出集団Bはともに平均値、標準偏差が99%同じ母集団から抽出されたものである。」といった仮説が帰無仮説となる。こうした帰無仮説から予想される統計量と、実際に抽出集団のデータから計算された統計量が一致する確率(p値という)を求め、その確率が予め決めた基準(有意水準、5%または1%が使用されることが多い)よりも小さい(つまり「起こりそうもない」)場合には「有意差がある」として、上の仮説は棄却される。
仮説検定には様々な手法があり、帰無仮説により使い分ける必要がある。
詳細は「仮説検定」を参照
検定手法
統計学的検定手法は、データが特定の確率分布に従うことを仮定する「パラメトリックな手法」と、それを仮定しない「ノンパラメトリックな手法」に分けられる。
- パラメトリックな検定手法
- ノンパラメトリックな検定手法
- Wilcoxon検定
- カイ二乗検定
- フィッシャーの正確確率検定
詳細は「ノンパラメトリック手法」を参照
教材
- 心理学の初学者向けの統計テキストは、推計統計学に分量の多くを割いている。文系向けに書かれた、数式や証明にこだわらずに基本的な考え方や技法を伝えるものも増えている。
- サリドマイドに関する論文である「アザラシ状奇形の原因 -サリドマイド仮説の成立に関する統計学上の争点について」(吉村功)[1]も、大学の講義などでは推計統計学の好例として教材に使用されることがある。
参考文献
- 『統計学入門』 東京大学教養学部統計学教室(編)、東京大学出版会、1991年。
- 蓑谷 千凰彦 『推定と検定のはなし』 東京図書、1988年。
- R. A. フィッシャー 『統計的方法と科学的推論』 渋谷 政昭, 竹内 啓(訳)、1962年。
統計学 |
|
標本調査 |
|
|
要約統計量 |
|
|
統計的推測 |
仮説検定 |
- 帰無仮説
- 対立仮説
- 有意
- 棄却
- ノンパラメトリック手法
- スチューデントのt検定
- ウェルチのt検定
- カイ二乗検定
- イェイツのカイ二乗検定
- 累積カイ二乗検定
- F検定
- G検定
- マン・ホイットニーのU検定
- Z検定
- フィッシャーの正確確率検定
- 二項検定
- 尤度比検定
- マンテル検定
- コクラン・マンテル・ヘンツェルの統計量
- ウィルコクソンの符号順位検定
- アンダーソン–ダーリング検定
- カイパー検定
- ジャック–ベラ検定
- シャピロ–ウィルク検定
- コルモゴロフ–スミルノフ検定
- 分散分析
- 共分散分析
|
|
区間推定 |
|
|
その他 |
- 最尤推定
- ベイズ推定
- 尤度関数
- カーネル密度推定
- 最小距離推定
- メタアナリシス
|
|
|
生存時間分析 |
- 生存時間関数
- カプラン=マイヤー推定量
- ログランク検定
- 故障率
- 比例ハザードモデル
|
|
相関 |
- 交絡変数
- ピアソンの積率相関係数
- 順位相関
- スピアマンの順位相関係数
- ケンドールの順位相関係数
|
|
モデル |
- 一般線形モデル
- 一般化線形モデル
- 混合モデル
- 一般化線形混合モデル
|
|
回帰 |
線形 |
- 線形回帰
- リッジ回帰
- Lasso
- エラスティックネット
|
|
非線形 |
- k近傍法
- 回帰木
- ランダムフォレスト
- ニューラルネットワーク
- サポートベクター回帰
- 射影追跡回帰
|
|
|
分類 |
線形 |
- 線形判別分析
- ロジスティック回帰
- 単純ベイズ分類器
- 単純パーセプトロン
- 線形サポートベクターマシン
|
|
二次 |
|
|
非線形 |
- k近傍法
- 決定木
- ランダムフォレスト
- ニューラルネットワーク
- サポートベクターマシン
- ベイジアンネットワーク
- 隠れマルコフモデル
|
|
その他 |
|
|
|
教師なし学習 |
|
|
統計図表 |
- 棒グラフ
- バイプロット
- 箱ひげ図
- 管理図
- 森林プロット
- ヒストグラム
- Q-Q プロット
- ランチャート
- 散布図
- 幹葉図
|
|
歴史 |
|
|
応用 |
- 社会統計学
- 生物統計学
- 統計力学
- 計量経済学
- 機械学習
- 実験計画法
|
|
出版物 |
|
|
カテゴリ |
|
UpToDate Contents
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
Japanese Journal
- 社会統計学の遺産[断章](1)蜷川集団論・統計学史・推計学批判・計量経済学批判 (菊地進教授記念号)
- 特別招待席 統計学的推計学の活用疑問への応答 : 生物学的年代論の有用性に関する考察
Related Links
- Kindle 電子書籍リーダー Kindle Paperwhite 最高の読書体験、そのための端末 Kindle Paperwhite 3G 無料3G接続付きモデル Kindleアクセサリ カバー、保護フィルム、充電器ほか Kindle Fireタブレット Kindle Fire HD ニューモデル―Kindle ...
- デジタル大辞泉 推計学の用語解説 - 統計調査で、確率論を基礎にし、母集団(ぼしゅうだん)から任意抽出した標本によって母集団の状態を推測する統計理論。推測統計学。
Related Pictures
★リンクテーブル★
[★]
- 関
- inductive statistics
[★]
- 関
- stochastics
[★]
- 英
- stochastic、stochastically
- 関
- 確率的、確率論的
[★]
- 英
- estimation
- 関
- 推定、評価、見積