出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2013/05/23 02:34:20」(JST)
極座標系(きょくざひょうけい、Polar coordinates system)とは、n 次元ユークリッド空間 Rn 上で定義され、1 個の動径 r と n − 1 個の偏角 θ1, …, θn−1 からなる座標系のことである。点 S(0, 0, x3, …,xn) を除く直交座標は、局所的に一意的な極座標に座標変換できるが、S においてはヤコビアン が 0 となってしまうから、一意的な極座標表現は不可能である。それは、S に於ける偏角が定義できないことからも明らかである。
目次
|
2 次元ユークリッド空間 R2 に於ける極座標。1 個の動径 r と 1 個の偏角 θ によってなり、最も単純な極座標である。rθ 平面、極座標平面ともいう。特異点は (r, θ) = (0, θ) 即ち、xy座標での原点 (x, y) = (0, 0) である。2 次元実ベクトル空間にも定義できることから、複素数体 C 上にも定義できる。この時、円座標を極形式と呼んだりもする。その場合、オイラーの公式を利用して z = reiθ と表す。円座標平面上で偏角を限定しなければ、これはxy平面上で円を描く。
円座標で (0, 0) を除く xy 平面上の全ての点を表現できるから、これに z 軸を加えれば、xyz 空間が表現できる。これを円柱座標と言う。円柱座標空間上(rθz 空間上ともいう)で、θ, z を限定しなければ、これは xyz 空間上で円柱を描く。 また、円柱座標空間上の特異点は z 軸上の全ての点である。
3 次元ユークリッド空間 R3 における極座標。1 個の動径 r と 2 個の偏角 θ, φ によってなる(図を参照)。球座標において、動径を固定し、2 個の偏角を動かせば、xyz 空間上で球を描く。直交座標と球座標の間の変換は次の式で与えられる。
ただし、θx,y,z と φx,y はそれぞれ
を満たす実数。z 軸上の点はこの変換の特異点であって、偏角が定まらない。
極座標平面での長方形は、直交座標に於ける扇形の一部となる。特に θ の長さが 2π であれば、直交座標においては円の一部となる。r を 0 から +∞ とすれば、この円は直交座標平面全体となる。従って、直交座標平面全体は、極座標平面に於ける長方形、r × θ = [0, ∞) × [0, 2π) に等しい。以上のことは広義二重積分に於いて有用である。なぜなら上記から、
が導けるからである。この公式は、例えば次のように用いられる。
左辺の積分は、このままの状態で解くのは非常に困難だが、右辺の形にすれば、変数変換 r2 → r によって、
とできるから、あとは通常の二重積分の方法に従って簡単に解け、答えは π となる。
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
関連記事 | 「座標」 |
.