Not to be confused with Titan, Tintin, or Titian.
TTN |
|
Available structures |
PDB |
Ortholog search: PDBe RCSB |
List of PDB id codes |
4UOW, 1BPV, 1G1C, 1NCT, 1NCU, 1TIT, 1TIU, 1TKI, 1TNM, 1TNN, 1WAA, 1YA5, 2A38, 2BK8, 2F8V, 2ILL, 2J8H, 2J8O, 2NZI, 2RQ8, 2WP3, 2WWK, 2WWM, 2Y9R, 3KNB, 3LCY, 3LPW, 3PUC, 3Q5O, 3QP3, 4C4K, 4JNW, 4O00, 4QEG, 5BS0
|
|
|
Identifiers |
Aliases |
TTN, CMD1G, CMH9, CMPD4, EOMFC, HMERF, LGMD2J, MYLK5, TMD, titin |
External IDs |
MGI: 98864 HomoloGene: 130650 GeneCards: 7273 |
Gene ontology |
Molecular function |
• transferase activity
• nucleotide binding
• calcium ion binding
• protein kinase activity
• actinin binding
• muscle alpha-actinin binding
• structural molecule activity conferring elasticity
• metal ion binding
• calmodulin binding
• telethonin binding
• protease binding
• protein self-association
• actin filament binding
• protein serine/threonine kinase activity
• kinase activity
• protein binding
• identical protein binding
• enzyme binding
• protein tyrosine kinase activity
• structural constituent of muscle
• ATP binding
• protein kinase binding
|
Cellular component |
• cytoplasm
• M band
• cytosol
• I band
• striated muscle thin filament
• condensed nuclear chromosome
• extracellular region
• Z disc
• muscle myosin complex
• extracellular exosome
• nucleus
|
Biological process |
• sarcomerogenesis
• muscle contraction
• mitotic chromosome condensation
• cardiac muscle contraction
• phosphorylation
• cardiac muscle hypertrophy
• platelet degranulation
• cardiac muscle tissue morphogenesis
• skeletal muscle thin filament assembly
• detection of muscle stretch
• cardiac muscle fiber development
• response to calcium ion
• cardiac myofibril assembly
• protein phosphorylation
• muscle filament sliding
• regulation of protein kinase activity
• regulation of catalytic activity
• sarcomere organization
• skeletal muscle myosin thick filament assembly
• striated muscle contraction
• peptidyl-tyrosine phosphorylation
|
Sources:Amigo / QuickGO |
|
RNA expression pattern |
|
More reference expression data |
Orthologs |
Species |
Human |
Mouse |
Entrez |
|
|
Ensembl |
|
|
UniProt |
|
|
RefSeq (mRNA) |
NM_001256850
NM_001267550
NM_003319
NM_133378
NM_133379
|
NM_133432
NM_133437
|
|
|
RefSeq (protein) |
|
NP_001243779.1
NP_003310.4
NP_596869.4
NP_596870.2
NP_597676.3
|
|
|
Location (UCSC) |
Chr 2: 178.53 – 178.83 Mb |
Chr 2: 76.7 – 76.98 Mb |
PubMed search |
[1] |
[2] |
Wikidata |
View/Edit Human |
View/Edit Mouse |
Titin , also known as connectin, is a protein that, in humans, is encoded by the TTN gene.[3][4] Titin is a giant protein, greater than 1 µm in length,[5] that functions as a molecular spring which is responsible for the passive elasticity of muscle. It is composed of 244 individually folded protein domains connected by unstructured peptide sequences.[6] These domains unfold when the protein is stretched and refold when the tension is removed.[7]
Titin is important in the contraction of striated muscle tissues. It connects the Z line to the M line in the sarcomere. The protein contributes to force transmission at the Z line and resting tension in the I band region.[8] It limits the range of motion of the sarcomere in tension, thus contributing to the passive stiffness of muscle. Variations in the sequence of titin between different types of muscle (e.g., cardiac or skeletal) have been correlated with differences in the mechanical properties of these muscles.[3][9]
After myosin and actin, titin is the third most abundant protein in muscle and an adult human contains approximately 0.5 kg of titin.[10] With its length of ~27,000 to ~33,000 amino acids (depending on the splice isoform), titin is the largest known protein.[11] Furthermore, the gene for titin contains the largest number of exons (363) discovered in any single gene,[12] as well as the longest single exon (17,106 bp).
Contents
- 1 Discovery
- 2 Genomics
- 3 Isoforms
- 4 Structure
- 5 Function
- 6 Clinical relevance
- 7 Interactions
- 8 Linguistic significance
- 9 References
- 10 Further reading
- 11 External links
Discovery
Reiji Natori in 1954 was the first to propose an elastic structure in muscle fiber to account for the return to the resting state when muscles are stretched and then released.[13] In 1977, Koscak Maruyama and coworkers isolated an elastic protein from muscle fiber which they called connectin.[14] Two years later, Kuan Wang and coworkers identified a doublet band on electrophoresis gel corresponding to a high molecular weight elastic protein which they named titin.[15][16]
Labeit in 1990 isolated a partial cDNA clone of titin.[4] In 1995, Labeit and Kolmerer determined the cDNA sequence of human cardiac titin.[6] Bang and coworkers in 2001 determined the complete sequence of the human titin gene.[12][17]
Genomics
The human gene that encodes titin is found on chromosome 2 and contains 363 exons.
Isoforms
A number of titin isoforms are produced in different striated muscle tissues as a result of alternative splicing.[18] All but one of these isoforms are in the range of ~27,000 to ~36,000 amino acid residues in length. The exception is the small cardiac novex-3 isoform which is only 5,604 amino acid residues in length. The following table lists the known titin isoforms:
Isoform |
alias/description |
length |
MW |
Q8WZ42-1 |
The "canonical" sequence |
34,350 |
3,816,030 |
Q8WZ42-2 |
|
34,258 |
3,805,708 |
Q8WZ42-3 |
Small cardiac N2-B |
26,926 |
2,992,939 |
Q8WZ42-4 |
Soleus |
33,445 |
3,716,027 |
Q8WZ42-5 |
|
32,900 |
3,653,085 |
Q8WZ42-6 |
Small cardiac novex-3 |
5,604 |
631,567 |
Q8WZ42-7 |
Cardiac novex-2 |
33,615 |
3,734,648 |
Q8WZ42-8 |
Cardiac novex-1 |
34,475 |
3,829,846 |
Q8WZ42-9 |
|
27,118 |
3,013,957 |
Q8WZ42-10 |
|
27,051 |
3,006,755 |
Q8WZ42-11 |
|
33,423 |
3,713,600 |
Q8WZ42-12 |
|
35,991 |
3,994,625 |
Q8WZ42-13 |
|
34,484 |
3,831,069 |
Structure
Titin is the largest known protein; its human variant consists of 34,350 amino acids, with the molecular weight of the mature "canonical" isoform of the protein being approximately 3,816,188.13 Da.[19] Its mouse homologue is even larger, comprising 35,213 amino acids with a MW of 3,906,487.6 Da.[20] It has a theoretical isoelectric point of 6.01.[19] The protein's empirical chemical formula is C169,723H270,464N45,688O52,243S912.[19] It has a theoretical instability index (II) of 42.41, classifying the protein as unstable.[19] The protein's in vivo half-life, the time it takes for half of the amount of protein in a cell to break down after its synthesis in the cell, is predicted to be approximately 30 hours (in mammalian reticulocytes).[18]
The titin protein is located between the myosin thick filament and the Z disk.[21] Titin consists primarily of a linear array of two types of modules (also referred to as protein domains; 244 copies in total): type I (fibronectin type III domain; 132 copies) and type II (immunoglobulin domain; 112 copies).[6] This linear array is further organized into two regions:
- N-terminal I-band: acts as the elastic part of the molecule and is composed mainly of type II modules. More specifically the I-band contains two regions of tandem type II immunoglobulin domains on either side of a PEVK region that is rich in proline, glutamate, valine and lysine.[21]
- C-terminal A-band: is thought to act as a protein-ruler and possesses kinase activity. The A-band is composed of alternating type I and II modules with super-repeat segments. These have been shown to align to the 43 nm axial repeats of myosin thick filaments with immunoglobulin domains correlating to myosin crowns.[22]
Function
Sliding filament model of muscle contraction. (Titin labeled at upper right.)
Titin is a large abundant protein of striated muscle. An N-terminal Z-disc region and a C-terminal M-line region bind to the Z-line and M-line of the sarcomere, respectively, so that a single titin molecule spans half the length of a sarcomere. Titin also contains binding sites for muscle-associated proteins so it serves as an adhesion template for the assembly of contractile machinery in muscle cells. It has also been identified as a structural protein for chromosomes.[23][24] Considerable variability exists in the I-band, the M-line and the Z-disc regions of titin. Variability in the I-band region contributes to the differences in elasticity of different titin isoforms and, therefore, to the differences in elasticity of different muscle types. Of the many titin variants identified, five are described with complete transcript information available.[3][4]
Titin interacts with many sarcomeric proteins including:[12]
- Z line region: telethonin and alpha-actinin
- I band region: calpain-3 and obscurin
- M line region: myosin-binding protein C, calmodulin 1, CAPN3, and MURF1
Clinical relevance
Mutations anywhere within the unusually long sequence of this gene can cause premature stop codons or other defects. Titin mutations are associated with hereditary myopathy with early respiratory failure, early-onset myopathy with fatal cardiomyopathy, core myopathy with heart disease, centronuclear myopathy, Limb-girdle muscular dystrophy type 2J, familial dilated cardiomyopathy 9,[8][25] hypertrophic cardiomyopathy and tibial muscular dystrophy.[26] Further research also suggests that no genetically linked form of any dystrophy or myopathy can be safely excluded from being caused by a mutation on the TTN gene.[27] Truncating mutations in dilated cardiomyopathy patients are most commonly found in the A region; although truncations in the upstream I region might be expected to prevent translation of the A region entirely, alternative splicing creates some transcripts that do not encounter the premature stop codon, ameliorating its effect.[28]
Autoantibodies to titin are produced in patients with the autoimmune disease scleroderma.[23]
Interactions
Titin has been shown to interact with:
- ANK1,[29]
- ANKRD1,[30]
- ANKRD23[30]
- CAPN3,[31][32]
- FHL2,[33]
- OBSCN,[34]
- TCAP,[35][36][37][38] and
- TRIM63.[39]
Linguistic significance
The name titin is derived from the Greek Titan (a giant deity, anything of great size).[15]
As the largest known protein, titin also has the longest IUPAC name of a protein. The full chemical name of the human canonical form of titin, which starts methionyl... and ends ...isoleucine, contains 189,819 letters and is sometimes stated to be the longest word in the English language, or any language.[40] However, lexicographers regard generic names of chemical compounds as verbal formulae rather than English words.[41]
References
- ^ "Human PubMed Reference:".
- ^ "Mouse PubMed Reference:".
- ^ a b c "Entrez Gene: TTN titin".
- ^ a b c Labeit S, Barlow DP, Gautel M, Gibson T, Holt J, Hsieh CL, Francke U, Leonard K, Wardale J, Whiting A (1990). "A regular pattern of two types of 100-residue motif in the sequence of titin". Nature. 345 (6272): 273–6. doi:10.1038/345273a0. PMID 2129545.
- ^ Eric H. Lee. "The Chain-like Elasticity of Titin". Theoretical and Computational Biophysics Group, University of Illinois. Retrieved September 2014.
- ^ a b c Labeit S, Kolmerer B (1995). "Titins: giant proteins in charge of muscle ultrastructure and elasticity". Science. 2 270 (5234): 293–6. doi:10.1126/science.270.5234.293. PMID 7569978.
- ^ Minajeva A, Kulke M, Fernandez JM, Linke WA (2001). "Unfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils". Biophys. J. 80 (3): 1442–51. doi:10.1016/S0006-3495(01)76116-4. PMC 1301335. PMID 11222304.
- ^ a b Itoh-Satoh M, Hayashi T, Nishi H, Koga Y, Arimura T, Koyanagi T, Takahashi M, Hohda S, Ueda K, Nouchi T, Hiroe M, Marumo F, Imaizumi T, Yasunami M, Kimura A (2002). "Titin mutations as the molecular basis for dilated cardiomyopathy". Biochem. Biophys. Res. Commun. 291 (2): 385–93. doi:10.1006/bbrc.2002.6448. PMID 11846417.
- ^ Online 'Mendelian Inheritance in Man' (OMIM) 188840
- ^ Labeit S, Kolmerer B, Linke WA (1997). "The giant protein titin. Emerging roles in physiology and pathophysiology". Circ. Res. 80 (2): 290–4. doi:10.1161/01.RES.80.2.290. PMID 9012751.
- ^ Opitz CA, Kulke M, Leake MC, Neagoe C, Hinssen H, Hajjar RJ, Linke WA (2003). "Damped elastic recoil of the titin spring in myofibrils of human myocardium". Proc. Natl. Acad. Sci. U.S.A. 100 (22): 12688–93. doi:10.1073/pnas.2133733100. PMC 240679. PMID 14563922.
- ^ a b c Bang ML, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M, Witt CC, Labeit D, Gregorio CC, Granzier H, Labeit S (2001). "The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system". Circ. Res. 89 (11): 1065–72. doi:10.1161/hh2301.100981. PMID 11717165.
- ^ Natori R (1954). "Skinned Fibres of Skeletal Muscle and the Mechanism of Muscle Contraction-A Chronological Account of the Author's Investigations into Muscle Physiology" (PDF). Jikeikai Medical Journal. 54 (1).
- ^ Maruyama K, Matsubara S, Natori R, Nonomura Y, Kimura S (1977). "Connectin, an elastic protein of muscle. Characterization and Function". J. Biochem. 82 (2): 317–37. PMID 914784.
- ^ a b Wang K, McClure J, Tu A (1979). "Titin: major myofibrillar components of striated muscle". Proc. Natl. Acad. Sci. U.S.A. 76 (8): 3698–702. doi:10.1073/pnas.76.8.3698. PMC 383900. PMID 291034.
- ^ Maruyama K (1994). "Connectin, an elastic protein of striated muscle". Biophys. Chem. 50 (1-2): 73–85. doi:10.1016/0301-4622(94)85021-6. PMID 8011942.
- ^ Online 'Mendelian Inheritance in Man' (OMIM) Titin -188840
- ^ a b "Titin - Homo sapiens (Human)". Universal Protein Resource. UniProt Consortium. 2010-10-05. Retrieved 2010-10-15.
- ^ a b c d "ProtParam for human titin". ExPASy Proteomics Server. Swiss Institute of Bioinformatics. Retrieved 2011-07-25.
- ^ "ProtParam for mouse titin". ExPASy Proteomics Server. Swiss Institute of Bioinformatics. Retrieved 2010-05-06.
- ^ a b Wang K, McCarter R, Wright J, Beverly J, Ramirez-Mitchell R (1991). "Regulation of skeletal muscle stiffness and elasticity by titin isoforms: a test of the segmental extension model of resting tension". Proc. Natl. Acad. Sci. U.S.A. 88 (16): 7101–5. doi:10.1073/pnas.88.16.7101. PMC 52241. PMID 1714586.
- ^ Bennett PM, Gautel M (1996). "Titin domain patterns correlate with the axial disposition of myosin at the end of the thick filament". J. Mol. Biol. 259 (5): 896–903. doi:10.1006/jmbi.1996.0367. PMID 8683592.
- ^ a b Machado C, Sunkel CE, Andrew DJ (1998). "Human autoantibodies reveal titin as a chromosomal protein". J. Cell Biol. 141 (2): 321–33. doi:10.1083/jcb.141.2.321. PMC 2148454. PMID 9548712.
- ^ Machado C, Andrew DJ (2000). "Titin as a chromosomal protein". Adv. Exp. Med. Biol. 481: 221–32; discussion 232–6. doi:10.1007/978-1-4615-4267-4_13. PMID 10987075.
- ^ Siu BL, Niimura H, Osborne JA, Fatkin D, MacRae C, Solomon S, Benson DW, Seidman JG, Seidman CE (1999). "Familial dilated cardiomyopathy locus maps to chromosome 2q31". Circulation. 99 (8): 1022–6. doi:10.1161/01.cir.99.8.1022. PMID 10051295.
- ^ Hackman P, Vihola A, Haravuori H, Marchand S, Sarparanta J, De Seze J, Labeit S, Witt C, Peltonen L, Richard I, Udd B (2002). "Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin". Am. J. Hum. Genet. 71 (3): 492–500. doi:10.1086/342380. PMC 379188. PMID 12145747.
- ^ Udd B, Vihola A, Sarparanta J, Richard I, Hackman P (2005). "Titinopathies and extension of the M-line mutation phenotype beyond distal myopathy and LGMD2J". Neurology. 64 (4): 636–42. doi:10.1212/01.WNL.0000151853.50144.82. PMID 15728284.
- ^ Hinson JT, Chopra A, Nafissi N, Polacheck WJ, Benson CC, Swist S, et al. (2015). "Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy". Science. 349 (6251): 982–6. doi:10.1126/science.aaa5458. PMID 26315439.
- ^ Kontrogianni-Konstantopoulos A, Bloch RJ (2003). "The hydrophilic domain of small ankyrin-1 interacts with the two N-terminal immunoglobulin domains of titin". J. Biol. Chem. 278 (6): 3985–91. doi:10.1074/jbc.M209012200. PMID 12444090.
- ^ a b Miller MK, Bang ML, Witt CC, Labeit D, Trombitas C, Watanabe K, Granzier H, McElhinny AS, Gregorio CC, Labeit S (2003). "The muscle ankyrin repeat proteins: CARP, ankrd2/Arpp and DARP as a family of titin filament-based stress response molecules". J. Mol. Biol. 333 (5): 951–64. doi:10.1016/j.jmb.2003.09.012. PMID 14583192.
- ^ Ono Y, Shimada H, Sorimachi H, Richard I, Saido TC, Beckmann JS, Ishiura S, Suzuki K (1998). "Functional defects of a muscle-specific calpain, p94, caused by mutations associated with limb-girdle muscular dystrophy type 2A". J. Biol. Chem. 273 (27): 17073–8. doi:10.1074/jbc.273.27.17073. PMID 9642272.
- ^ Sorimachi H, Kinbara K, Kimura S, Takahashi M, Ishiura S, Sasagawa N, Sorimachi N, Shimada H, Tagawa K, Maruyama K (1995). "Muscle-specific calpain, p94, responsible for limb girdle muscular dystrophy type 2A, associates with connectin through IS2, a p94-specific sequence". J. Biol. Chem. 270 (52): 31158–62. doi:10.1074/jbc.270.52.31158. PMID 8537379.
- ^ Lange S, Auerbach D, McLoughlin P, Perriard E, Schäfer BW, Perriard JC, Ehler E (2002). "Subcellular targeting of metabolic enzymes to titin in heart muscle may be mediated by DRAL/FHL-2". J. Cell. Sci. 115 (Pt 24): 4925–36. doi:10.1242/jcs.00181. PMID 12432079.
- ^ Young P, Ehler E, Gautel M (2001). "Obscurin, a giant sarcomeric Rho guanine nucleotide exchange factor protein involved in sarcomere assembly". J. Cell Biol. 154 (1): 123–36. doi:10.1083/jcb.200102110. PMC 2196875. PMID 11448995.
- ^ Gregorio CC, Trombitás K, Centner T, Kolmerer B, Stier G, Kunke K, Suzuki K, Obermayr F, Herrmann B, Granzier H, Sorimachi H, Labeit S (1998). "The NH2 terminus of titin spans the Z-disc: its interaction with a novel 19-kD ligand (T-cap) is required for sarcomeric integrity". J. Cell Biol. 143 (4): 1013–27. doi:10.1083/jcb.143.4.1013. PMC 2132961. PMID 9817758.
- ^ Mayans O, van der Ven PF, Wilm M, Mues A, Young P, Fürst DO, Wilmanns M, Gautel M (1998). "Structural basis for activation of the titin kinase domain during myofibrillogenesis". Nature. 395 (6705): 863–9. doi:10.1038/27603. PMID 9804419.
- ^ Zou P, Gautel M, Geerlof A, Wilmanns M, Koch MH, Svergun DI (2003). "Solution scattering suggests cross-linking function of telethonin in the complex with titin". J. Biol. Chem. 278 (4): 2636–44. doi:10.1074/jbc.M210217200. PMID 12446666.
- ^ Mues A, van der Ven PF, Young P, Fürst DO, Gautel M (1998). "Two immunoglobulin-like domains of the Z-disc portion of titin interact in a conformation-dependent way with telethonin". FEBS Lett. 428 (1-2): 111–4. doi:10.1016/S0014-5793(98)00501-8. PMID 9645487.
- ^ Centner T, Yano J, Kimura E, McElhinny AS, Pelin K, Witt CC, Bang ML, Trombitas K, Granzier H, Gregorio CC, Sorimachi H, Labeit S (2001). "Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain". J. Mol. Biol. 306 (4): 717–26. doi:10.1006/jmbi.2001.4448. PMID 11243782.
- ^ McCulloch S. "Longest word in English". Sarah McCulloch.com. Retrieved 2010-05-24.
- ^ Oxford Word and Language Service team. "Ask the experts - What is the longest English word?". AskOxford.com / Oxford University Press. Archived from the original on 2008-09-13. Retrieved 2008-01-13.
Further reading
- Tskhovrebova L, Trinick J (2003). "Titin: properties and family relationships". Nat. Rev. Mol. Cell Biol. 4 (9): 679–89. doi:10.1038/nrm1198. PMID 14506471.
- Kinbara K, Sorimachi H, Ishiura S, Suzuki K (1998). "Skeletal muscle-specific calpain, p49: structure and physiological function". Biochem. Pharmacol. 56 (4): 415–20. doi:10.1016/S0006-2952(98)00095-1. PMID 9763216.
- Kolmerer B, Witt CC, Freiburg A, Millevoi S, Stier G, Sorimachi H, Pelin K, Carrier L, Schwartz K, Labeit D, Gregorio CC, Linke WA, Labeit S (1999). "The titin cDNA sequence and partial genomic sequences: insights into the molecular genetics, cell biology and physiology of the titin filament system". Rev. Physiol. Biochem. Pharmacol. 138: 19–55. doi:10.1007/BF02346659. PMID 10396137.
- Trinick J, Tskhovrebova L (1999). "Titin: a molecular control freak". Trends Cell Biol. 9 (10): 377–80. doi:10.1016/S0962-8924(99)01641-4. PMID 10481174.
- Sorimachi H, Ono Y, Suzuki K (2000). "Skeletal muscle-specific calpain, p94, and connectin/titin: their physiological functions and relationship to limb-girdle muscular dystrophy type 2A". Adv. Exp. Med. Biol. 481: 383–95; discussion 395–7. doi:10.1007/978-1-4615-4267-4_23. PMID 10987085.
- Tskhovrebova L, Trinick J (2002). "Role of titin in vertebrate striated muscle". Philos. Trans. R. Soc. Lond., B, Biol. Sci. 357 (1418): 199–206. doi:10.1098/rstb.2001.1028. PMC 1692937. PMID 11911777.
- Sela BA (2002). "Titin: some aspects of the largest protein in the body". Harefuah. 141 (7): 631–5, 665. PMID 12187564.
- Tskhovrebova L, Trinick J (2004). "Properties of titin immunoglobulin and fibronectin-3 domains". J. Biol. Chem. 279 (45): 46351–4. doi:10.1074/jbc.R400023200. PMID 15322090.
- Wu Y, Labeit S, Lewinter MM, Granzier H (2002). "Titin: an endosarcomeric protein that modulates myocardial stiffness in DCM". J. Card. Fail. 8 (6 Suppl): S276–86. doi:10.1054/jcaf.2002.129278. PMID 12555133.
External links
|
Look up the full chemical name of titin in Wiktionary, the free dictionary. |
- GeneReviews/NIH/NCBI/UW entry on Familial Hypertrophic Cardiomyopathy Overview
- GeneReviews/NCBI/NIH/UW entry on Udd Distal Myopathy, Tibial Muscular Dystrophy, Udd Myopathy
- GeneReviews/NIH/NCBI/UW entry on Salih Myopathy or Early-Onset Myopathy with Fatal Cardiomyopathy
- Full chemical name of Titin
- Part of the chemical name of Titin pronounced
- World's Longest Word Has 189,819 Letters, Takes 3.5 Hours To Pronounce (Now With Video Pronunciation!) | Geekologie
PDB gallery
|
|
|
1bpv: TITIN MODULE A71 FROM HUMAN CARDIAC MUSCLE, NMR, 50 STRUCTURES
|
|
1g1c: I1 DOMAIN FROM TITIN
|
|
1h8b: EF-HANDS 3,4 FROM ALPHA-ACTININ / Z-REPEAT 7 FROM TITIN
|
|
1nct: TITIN MODULE M5, N-TERMINALLY EXTENDED, NMR
|
|
1ncu: Titin Module M5, N-terminally Extended, NMR
|
|
1tit: TITIN, IG REPEAT 27, NMR, MINIMIZED AVERAGE STRUCTURE
|
|
1tiu: TITIN, IG REPEAT 27, NMR, 24 STRUCTURES
|
|
1tki: AUTOINHIBITED SERINE KINASE DOMAIN OF THE GIANT MUSCLE PROTEIN TITIN
|
|
1tnm: TERTIARY STRUCTURE OF AN IMMUNOGLOBULIN-LIKE DOMAIN FROM THE GIANT MUSCLE PROTEIN TITIN: A NEW MEMBER OF THE I SET
|
|
1tnn: Tertiary structure of an immunoglobulin-like domain from the giant muscle protein titin: a new member of the I set
|
|
1waa: IG27 PROTEIN DOMAIN
|
|
1ya5: Crystal structure of the titin domains z1z2 in complex with telethonin
|
|
2a38: Crystal structure of the N-Terminus of titin
|
|
2bk8: M1 DOMAIN FROM TITIN
|
|
2f8v: Structure of full length telethonin in complex with the N-terminus of titin
|
|
2ill: Anomalous substructure of Titin-A168169
|
|
2nzi: Crystal structure of domains A168-A170 from titin
|
|
|
Proteins of the cytoskeleton
|
|
Human |
|
|
Nonhuman |
- Major sperm proteins
- Prokaryotic cytoskeleton
|
|
See also: cytoskeletal defects
|
Muscle tissue
|
|
Smooth
muscle |
- Calmodulin
- Vascular smooth muscle
|
|
Striated
muscle |
Skeletal
muscle |
Costamere/
DAPC |
Membrane/
extracellular |
DAP: |
- Sarcoglycan
- SGCA
- SGCB
- SGCD
- SGCE
- SGCG
- SGCZ
- Dystroglycan
|
|
- Sarcospan
- Laminin, alpha 2
|
|
|
Intracellular |
- Dystrophin
- Dystrobrevin
- Syntrophin
- Syncoilin
- Dysbindin
- Synemin/desmuslin
|
|
related: |
|
|
|
|
Sarcomere/
(a, i, and h bands;
z and m lines) |
- Myofilament
- thin filament/actin
- thick filament/myosin
- elastic filament/titin
- nebulin
|
|
Connective tissue |
- Epimysium
- Fascicle
- Perimysium
- Endomysium
- Connective tissue in skeletal muscle
|
|
General |
- Neuromuscular junction
- Motor unit
- Muscle spindle
- Excitation–contraction coupling
- Sliding filament mechanism
|
|
|
Cardiac
muscle |
- Myocardium
- Intercalated disc
- Nebulette
|
|
Both |
Fiber |
- Muscle fiber
- Myofibril
- Microfilament/Myofilament
- Sarcomere
|
|
Cells |
- Myoblast/Myocyte
- Myosatellite cell
|
|
Other |
- Desmin
- Sarcoplasm
- Sarcolemma
- Sarcoplasmic reticulum
|
|
|
Other/
ungrouped |
- Myotilin
- Telethonin
- Dysferlin
- Fukutin
- Fukutin-related protein
|
|
Kinases: Serine/threonine-specific protein kinases (EC 2.7.11-12)
|
|
Serine/threonine-specific protein kinases (EC 2.7.11.1-EC 2.7.11.20)
|
|
|
|
|
Serine/threonine-specific protein kinases (EC 2.7.11.21-EC 2.7.11.30)
|
|
Polo kinase (EC 2.7.11.21) |
|
|
Cyclin-dependent kinase (EC 2.7.11.22) |
- CDK1
- CDK2
- CDKL2
- CDK3
- CDK4
- CDK5
- CDKL5
- CDK6
- CDK7
- CDK8
- CDK9
- CDK10
- CDK12
- CDC2L5
- PCTK1
- PCTK2
- PCTK3
- PFTK1
- CDC2L1
|
|
(RNA-polymerase)-subunit kinase (EC 2.7.11.23) |
- RPS6KA5
- RPS6KA4
- P70S6 kinase
- P70-S6 Kinase 1
- RPS6KB2
- RPS6KA2
- RPS6KA3
- RPS6KA1
- RPS6KC1
|
|
Mitogen-activated protein kinase (EC 2.7.11.24) |
- Extracellular signal-regulated
- MAPK1
- MAPK3
- MAPK4
- MAPK6
- MAPK7
- MAPK12
- MAPK15
- C-Jun N-terminal
- P38 mitogen-activated protein
|
|
MAP3K (EC 2.7.11.25) |
- MAP kinase kinase kinases
- MAP3K1
- MAP3K2
- MAP3K3
- MAP3K4
- MAP3K5
- MAP3K6
- MAP3K7
- MAP3K8
- RAFs
- MLKs
- MAP3K12
- MAP3K13
- MAP3K9
- MAP3K10
- MAP3K11
- MAP3K7
- ZAK
- CDC7
- MAP3K14
|
|
Tau-protein kinase (EC 2.7.11.26) |
|
|
(acetyl-CoA carboxylase) kinase (EC 2.7.11.27) |
|
|
Tropomyosin kinase (EC 2.7.11.28) |
|
|
Low-density-lipoprotein receptor kinase (EC 2.7.11.29) |
|
|
Receptor protein serine/threonine kinase (EC 2.7.11.30) |
- Bone morphogenetic protein receptors
- BMPR1
- BMPR1A
- BMPR1B
- BMPR2
- ACVR1
- ACVR1B
- ACVR1C
- ACVR2A
- ACVR2B
- ACVRL1
- Anti-Müllerian hormone receptor
|
|
|
|
Dual-specificity kinases (EC 2.7.12)
|
|
MAP2K |
- MAP2K1
- MAP2K2
- MAP2K3
- MAP2K4
- MAP2K5
- MAP2K6
- MAP2K7
|
|
|
Enzymes
|
|
Activity |
- Active site
- Binding site
- Catalytic triad
- Oxyanion hole
- Enzyme promiscuity
- Catalytically perfect enzyme
- Coenzyme
- Cofactor
- Enzyme catalysis
- Enzyme kinetics
- Lineweaver–Burk plot
- Michaelis–Menten kinetics
|
|
Regulation |
- Allosteric regulation
- Cooperativity
- Enzyme inhibitor
|
|
Classification |
- EC number
- Enzyme superfamily
- Enzyme family
- List of enzymes
|
|
Types |
- EC1 Oxidoreductases(list)
- EC2 Transferases(list)
- EC3 Hydrolases(list)
- EC4 Lyases(list)
- EC5 Isomerases(list)
- EC6 Ligases(list)
|
This article incorporates text from the United States National Library of Medicine, which is in the public domain.