出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2017/03/07 18:23:41」(JST)
|
|||
Names | |||
---|---|---|---|
Preferred IUPAC name
Oxalic acid[1]
|
|||
Systematic IUPAC name
Ethanedioic acid[1]
|
|||
Other names
Wood bleach
|
|||
Identifiers | |||
CAS Number
|
144-62-7 Y | ||
3D model (Jmol) | Interactive image | ||
3DMet | B00059 | ||
Beilstein Reference
|
385686 | ||
ChEBI | CHEBI:16995 Y | ||
ChEMBL | ChEMBL146755 Y | ||
ChemSpider | 946 Y | ||
DrugBank | DB03902 Y | ||
ECHA InfoCard | 100.005.123 | ||
EC Number | 205-634-3 | ||
Gmelin Reference
|
2208 | ||
KEGG | C00209 N | ||
MeSH | Oxalic+acid | ||
PubChem | 971 | ||
RTECS number | RO2450000 | ||
UNII | 9E7R5L6H31 Y | ||
UN number | 3261 | ||
InChI
|
|||
SMILES
|
|||
Properties | |||
Chemical formula
|
C2H2O4 | ||
Molar mass | 90.03 g·mol−1 (anhydrous) |
||
Appearance | White crystals | ||
Odor | odorless | ||
Density | 1.90 g cm−3 (anhydrous) 1.653 g cm−3 (dihydrate) |
||
Melting point | 189 to 191 °C (372 to 376 °F; 462 to 464 K) 101.5 °C (214.7 °F; 374.6 K) dihydrate |
||
Solubility in water
|
143 g/L (25 °C) | ||
Solubility | 237 g/L (15 °C) in ethanol
14 g/L (15 °C) in diethyl ether [2] |
||
Vapor pressure | <0.001 mmHg (20 °C)[3] | ||
Acidity (pKa) | 1.25, 4.14[4] | ||
Magnetic susceptibility (χ)
|
-60.05·10−6 cm3/mol | ||
Pharmacology | |||
ATCvet code
|
QP53AG03 (WHO) | ||
Hazards | |||
Main hazards | T | ||
Safety data sheet | External MSDS | ||
NFPA 704 |
1
3
0
|
||
Flash point | 166 °C (331 °F; 439 K) | ||
Lethal dose or concentration (LD, LC): | |||
LDLo (lowest published)
|
1000 mg/kg (dog, oral) 1400 mg/kg (rat) |
||
US health exposure limits (NIOSH): | |||
PEL (Permissible)
|
TWA 1 mg/m3[3] | ||
REL (Recommended)
|
TWA 1 mg/m3 ST 2 mg/m3[3] | ||
IDLH (Immediate danger)
|
500 mg/m3[3] | ||
Related compounds | |||
Related compounds
|
oxalyl chloride disodium oxalate |
||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|||
N verify (what is YN ?) | |||
Infobox references | |||
Oxalic acid is an organic compound with the formula C2H2O4. It is a colorless crystalline solid that forms a colorless solution in water. Its condensed formula is HOOCCOOH, reflecting its classification as the simplest dicarboxylic acid. Its acid strength is much greater than that of acetic acid. Oxalic acid is a reducing agent [6] and its conjugate base, known as oxalate (C
2O2−
4), is a chelating agent for metal cations. Typically, oxalic acid occurs as the dihydrate with the formula C2H2O4·2H2O. Excessive ingestion of oxalic acid or prolonged skin contact can be dangerous.
The preparation of salts of oxalic acid from plants had been known, at the latest, since 1745, when the Dutch botanist and physician Herman Boerhaave isolated a salt from sorrel.[7] By 1773, François Pierre Savary of Fribourg, Switzerland had isolated oxalic acid from its salt in sorrel.[8]
In 1776, Swedish chemists Carl Wilhelm Scheele and Torbern Olof Bergman[9] produced oxalic acid by reacting sugar with concentrated nitric acid; Scheele called the acid that resulted socker-syra or såcker-syra (sugar acid). By 1784, Scheele had shown that "sugar acid" and oxalic acid from natural sources were identical.[10]
In 1824, the German chemist Friedrich Wöhler obtained oxalic acid by reacting cyanogen with ammonia in aqueous solution.[11] This experiment may represent the first synthesis of a natural product.[12]
Oxalic acid is mainly manufactured by the oxidation of carbohydrates or glucose using nitric acid or air in the presence of vanadium pentoxide. A variety of precursors can be used including glycolic acid and ethylene glycol.[13] A newer method entails oxidative carbonylation of alcohols to give the diesters of oxalic acid:
These diesters are subsequently hydrolyzed to oxalic acid. Approximately 120,000 tonnes are produced annually.[12]
Historically oxalic acid was obtained exclusively by using caustics, such as sodium or potassium hydroxide, on sawdust.[14]
Although it can be readily purchased, oxalic acid can be prepared in the laboratory by oxidizing sucrose using nitric acid in the presence of a small amount of vanadium pentoxide as a catalyst.[15]
The hydrated solid can be dehydrated with heat or by azeotropic distillation.[16]
Developed in the Netherlands, an electrocatalysis by a copper complex helps reduce carbon dioxide to oxalic acid;[17] this conversion uses carbon dioxide as a feedstock to generate oxalic acid.
Anhydrous oxalic acid exists as two polymorphs; in one the hydrogen-bonding results in a chain-like structure whereas the hydrogen bonding pattern in the other form defines a sheet-like structure.[18] Because the anhydrous material is both acidic and hydrophilic (water seeking), it is used in esterifications.
Oxalic acid is a relatively strong acid, despite being a carboxylic acid:
Oxalic acid undergoes many of the reactions characteristic of other carboxylic acids. It forms esters such as dimethyl oxalate (m.p. 52.5 to 53.5 °C (126.5 to 128.3 °F)).[19] It forms an acid chloride called oxalyl chloride.
Oxalate, the conjugate base of oxalic acid, is an excellent ligand for metal ions, e.g. the drug oxaliplatin.
Oxalic acid and oxalates can be oxidized by permanganate in an autocatalytic reaction.[20]
At least two pathways exist for the enzyme-mediated formation of oxalate. In one pathway, oxaloacetate, a component of the Krebs citric acid cycle, is hydrolyzed to oxalate and acetic acid by the enzyme oxaloacetase:[21]
It also arises from the dehydrogenation of glycolic acid, which is produced by the metabolism of ethylene glycol.
Calcium oxalate is the most common component of kidney stones. Early investigators isolated oxalic acid from wood-sorrel (Oxalis). Members of the spinach family and the brassicas (cabbage, broccoli, brussels sprouts) are high in oxalates, as are sorrel and umbellifers like parsley.[22] Rhubarb leaves contain about 0.5% oxalic acid and jack-in-the-pulpit (Arisaema triphyllum) contains calcium oxalate crystals. Similarly the Virginia creeper, a common decorative vine, produces oxalic acid in its berries as well as oxalite crystals in the sap (in the form of raphides). Bacteria produce oxalates from oxidation of carbohydrates.[12]
Plants of the Fenestraria genus produce optical fibers made from crystalline oxalic acid to transmit light to subterranean photosynthetic sites.[23]
Oxidized bitumen or bitumen exposed to gamma rays also contains oxalic acid among its degradation products. Oxalic acid may increase the leaching of radionuclides conditioned in bitumen for radioactive waste disposal.[24]
The conjugate base of oxalic acid is the hydrogenoxalate anion, and its conjugate base (oxalate) is a competitive inhibitor of the lactate dehydrogenase (LDH) enzyme.[25] LDH catalyses the conversion of pyruvate to lactic acid (end product of the fermentation (anaerobic) process) oxidising the coenzyme NADH to NAD+ and H+ concurrently. Restoring NAD+ levels is essential to the continuation of anaerobic energy metabolism through glycolysis. As cancer cells preferentially use anaerobic metabolism (see Warburg effect) inhibition of LDH has been shown to inhibit tumor formation and growth,[26] thus is an interesting potential course of cancer treatment.
About 25% of produced oxalic acid is used as a mordant in dyeing processes. It is used in bleaches, especially for pulpwood. It is also used in baking powder[12] and as a third reagent in silica analysis instruments.
Oxalic acid's main applications include cleaning or bleaching, especially for the removal of rust (iron complexing agent). Bar Keepers Friend is an example of a household cleaner containing oxalic acid. Its utility in rust removal agents is due to its forming a stable, water-soluble salt with ferric iron, ferrioxalate ion.
Oxalic acid is an important reagent in lanthanide chemistry. Hydrated lanthanide oxalates form readily in very strongly acidic solutions in a densely crystalline, easily filtered form, largely free of contamination by nonlanthanide elements. Thermal decomposition of these oxalate gives the oxides, which is the most commonly marketed form of these elements.
Vaporized oxalic acid, or a 3.2% solution of oxalic acid in sugar syrup, is used by some beekeepers as a miticide against the parasitic varroa mite.[27]
Oxalic acid is rubbed onto completed marble sculptures to seal the surface and introduce a shine. Oxalic acid is also used to clean iron and manganese deposits from quartz crystals.[28][29]
Oxalic acid is used as a bleach for wood, removing black stains caused by water penetration.
Vegetable | Oxalic acid (g/100 g)[30][clarification needed] |
---|---|
Amaranth | 7000109000000000000♠ 1.09 |
Asparagus | 6999130000000000000♠ 0.13 |
Beans, snap | 6999360000000000000♠ 0.36 |
Beet leaves | 6999610000000000000♠ 0.61 |
Broccoli | 6999190000000000000♠ 0.19 |
Brussels sprouts | 6999360000000000000♠ 0.36 |
Cabbage | 6999100000000000000♠ 0.10 |
Carrot | 6999500000000000000♠ 0.50 |
Cassava | 7000126000000000000♠ 1.26 |
Cauliflower | 6999150000000000000♠ 0.15 |
Celery | 6999190000000000000♠ 0.19 |
Chicory | 6999210000000000000♠ 0.2 |
Chives | 7000148000000000000♠ 1.48 |
Collards | 6999450000000000000♠ 0.45 |
Coriander | 6998100000000000000♠ 0.01 |
Corn, sweet | 6998100000000000000♠ 0.01 |
Cucumber | 6998200000000000000♠ 0.02 |
Eggplant | 6999190000000000000♠ 0.19 |
Endive | 6999110000000000000♠ 0.11 |
Garlic | 6999360000000000000♠ 0.36 |
Kale | 6998200000000000000♠ 0.02 |
Lettuce | 6999330000000000000♠ 0.33 |
Okra | 6998500000000000000♠ 0.05 |
Onion | 6998500000000000000♠ 0.05 |
Parsley | 7000170000000000000♠ 1.70 |
Parsnip | 6998400000000000000♠ 0.04 |
Pea | 6998500000000000000♠ 0.05 |
Bell pepper | 6998400000000000000♠ 0.04 |
Potato | 6998500000000000000♠ 0.05 |
Purslane | 7000131000000000000♠ 1.31 |
Radish | 6999480000000000000♠ 0.48 |
Rhubarb leaves | 6999520000000000000♠ 0.52[31] |
Rutabaga | 6998300000000000000♠ 0.03 |
Spinach | 6999970000000000000♠ 0.97 |
Squash | 6998200000000000000♠ 0.02 |
Sweet potato | 6999240000000000000♠ 0.24 |
Tomato | 6998500000000000000♠ 0.05 |
Turnip | 6999210000000000000♠ 0.21 |
Turnip greens | 6998500000000000000♠ 0.05 |
Watercress | 6999310000000000000♠ 0.31 |
Oxalic acid in concentrated form can have harmful effects through contact and if ingested; manufacturers provide details in Material Safety Data Sheets (MSDS). It is not identified as mutagenic or carcinogenic; there is a possible risk of congenital malformation in the fetus; may be harmful if inhaled, and is extremely destructive to tissue of mucous membranes and upper respiratory tract; harmful if swallowed; harmful to and destructive of tissue and causes burns if absorbed through the skin or is in contact with the eyes. Symptoms and effects include a burning sensation, cough, wheezing, laryngitis, shortness of breath, spasm, inflammation and edema of the larynx, inflammation and edema of the bronchi, pneumonitis, pulmonary edema.[32]
In humans, ingested oxalic acid has an oral LDLo (lowest published lethal dose) of 600 mg/kg.[33] It has been reported that the lethal oral dose is 15 to 30 grams.[34]
The toxicity of oxalic acid is due to kidney failure caused by precipitation of solid calcium oxalate,[35] the main component of kidney stones. Oxalic acid can also cause joint pain due to the formation of similar precipitates in the joints. Ingestion of ethylene glycol results in oxalic acid as a metabolite which can also cause acute kidney failure.
Wikimedia Commons has media related to Oxalic acid. |
Authority control |
|
---|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「シュウ酸」「oxalate」 |
拡張検索 | 「glyoxalic acid」 |
関連記事 | 「oxal」 |
.