Integrase Zinc binding domain |
solution structure of the n-terminal zn binding domain of hiv-1 integrase (e form), nmr, 38 structures
|
Identifiers |
Symbol |
Integrase_Zn |
Pfam |
PF02022 |
InterPro |
IPR003308 |
SCOP |
1wjb |
SUPERFAMILY |
1wjb |
Available protein structures: |
Pfam |
structures |
PDB |
RCSB PDB; PDBe; PDBj |
PDBsum |
structure summary |
|
Integrase core domain |
crystal structure of rsv two-domain integrase
|
Identifiers |
Symbol |
rve |
Pfam |
PF00665 |
Pfam clan |
CL0219 |
InterPro |
IPR001584 |
SCOP |
2itg |
SUPERFAMILY |
2itg |
Available protein structures: |
Pfam |
structures |
PDB |
RCSB PDB; PDBe; PDBj |
PDBsum |
structure summary |
|
Integrase DNA binding domain |
crystal structure of rsv two-domain integrase
|
Identifiers |
Symbol |
IN_DBD_C |
Pfam |
PF00552 |
InterPro |
IPR001037 |
SCOP |
1ihw |
SUPERFAMILY |
1ihw |
Available protein structures: |
Pfam |
structures |
PDB |
RCSB PDB; PDBe; PDBj |
PDBsum |
structure summary |
|
Retroviral integrase (IN) is an enzyme produced by a retrovirus (such as HIV) that enables its genetic material to be integrated into the DNA of the infected cell. Retroviral INs are not to be confused with phage integrases, such as λ phage integrase (Int) (see site-specific recombination).
IN is a key component in the retroviral pre-integration complex (PIC).
Contents
- 1 Structure
- 2 Function
- 3 HIV IN
- 4 See also
- 5 References
- 6 External links
Structure[edit]
All retroviral IN proteins contain three canonical domains, connected by flexible linkers:
- an N-terminal HH-CC zinc-binding domain (a three-helical bundle stabilised by coordination of a Zn(II) cation)
- a catalytic core domain (RNaseH fold)
- a C-terminal DNA-binding domain (SH3 fold)[1]
Crystal and NMR structures of the individual domains and 2-domain constructs of integrases from HIV-1, HIV-2, SIV, and Rous Sarcoma Virus (RSV) have been reported, with the first structures determined in 1994.
Biochemical data and structural data suggest that retroviral IN functions as a tetramer (dimer-of-dimers). All three domains are important for multimerisation and viral DNA binding. Early in 2010, scientists solved the crystal structure of IN from prototype foamy virus (PFV) assembled on viral DNA ends.[2]
In addition, several host cellular proteins have been shown to interact with IN to facilitate the integration process. Human chromatin-associated protein LEDGF, which tightly binds HIV IN and directs HIV PIC towards highly-expressed genes for integration, is an example of such a host factor.
Function[edit]
Integration occurs following production of the double-stranded viral DNA by the viral RNA/DNA-dependent DNA polymerase reverse transcriptase.
The main function of IN is to insert the viral DNA into the host chromosomal DNA, a step that is essential for HIV replication. Integration is a point of no return for the cell, which becomes a permanent carrier of the viral genome (provirus). Integration is in part responsible for the persistence of retroviral infections. After integration, the viral gene expression and particle production may take place immediately or at some point in the future. The timing, it is presumed, depends on the activity of the chromosomal locus hosting the provirus.
Retroviral IN catalyzes two reactions:
- 3'-processing, in which two or three nucleotides are removed from one or both 3' ends of the viral DNA to expose the invariant CA dinucleotides at both 3'-ends of the viral DNA.
- the strand transfer reaction, in which the processed 3' ends of the viral DNA are covalently ligated to the host chromosomal DNA.
Both reactions are catalysed by the same active site and occur via transesterification, without a covalent protein-DNA intermediate, in contrast to reactions catalysed by Ser and Tyr recombinases (see site specific recombination).
HIV IN[edit]
HIV integrase is a 32 kDa protein produced from the C-terminal portion of the Pol gene product, and is an attractive target for new anti-HIV drugs.
In November 2005, data from a phase 2 study of an investigational HIV integrase inhibitor, MK-0518, demonstrated that the compound has potent antiviral activity.[3][4] On October 12, 2007, the Food and Drug Administration (U.S.) approved the integrase inhibitor Raltegravir (MK-0518, brand name Isentress TM).[5] The second integrase inhibitor, elvitegravir, was approved in the U.S. in August 2012.[6]
The crystal structure of human foamy virus integrase has been examined successfully.[7]
This protein may use the morpheein model of allosteric regulation.[8]
See also[edit]
- Site-specific recombinase technology
References[edit]
- ^ Lodi PJ, Ernst JA, Kuszewski J, Hickman AB, Engelman A, Craigie R, Clore GM, Gronenborn AM (August 1995). "Solution structure of the DNA binding domain of HIV-1 integrase". Biochemistry 34 (31): 9826–33. doi:10.1021/bi00031a002. PMID 7632683.
- ^ "Scientists say crack HIV/AIDS puzzle for drugs". Reuters. January 31, 2010.
- ^ Morales-Ramirez JO, Teppler H, Kovacs C, et al. Antiretroviral effect of MK-0518, a novel HIV-1 integrase inhibitor, in ART-naïve HIV-1 infected patients. Program and abstracts of the 10th European AIDS Conference; November 17–20, 2005; Dublin, Ireland. Abstract LBPS1/6. Online summary: http://clinicaloptions.com/HIV/Conference%20Coverage/Dublin%202005/Capsules/LBPS1-6.aspx
- ^ Savarino A (December 2006). "A historical sketch of the discovery and development of HIV-1 integrase inhibitors". Expert Opin Investig Drugs 15 (12): 1507–22. doi:10.1517/13543784.15.12.1507. PMID 17107277.
- ^ "FDA approves drug that fights HIV in new way - CNN.com". CNN. October 12, 2007. Retrieved May 5, 2010.
- ^ Sax PE, DeJesus E, Mills A, Zolopa A, Cohen C, Wohl D, Gallant JE, Liu HC, Zhong L, Yale K, White K, Kearney BP, Szwarcberg J, Quirk E, Cheng AK (June 2012). "Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir versus co-formulated efavirenz, emtricitabine, and tenofovir for initial treatment of HIV-1 infection: a randomised, double-blind, phase 3 trial, analysis of results after 48 weeks". Lancet 379 (9835): 2439–48. doi:10.1016/S0140-6736(12)60917-9. PMID 22748591.
- ^ Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P (March 2010). "Retroviral intasome assembly and inhibition of DNA strand transfer". Nature 464 (7286): 232–6. doi:10.1038/nature08784. PMC 2837123. PMID 20118915.
- ^ Selwood T, Jaffe EK (March 2012). "Dynamic dissociating homo-oligomers and the control of protein function". Arch. Biochem. Biophys. 519 (2): 131–43. doi:10.1016/j.abb.2011.11.020. PMID 22182754.
External links[edit]
- Integrases at the US National Library of Medicine Medical Subject Headings (MeSH)
Transferases: phosphorus-containing groups (EC 2.7)
|
|
2.7.1-2.7.4:
phosphotransferase/kinase
(PO4) |
2.7.1: OH acceptor |
- Hexo-
- Gluco-
- Fructo-
- Galacto-
- Phosphofructo-
- 1
- Liver
- Muscle
- Platelet
- 2
- Riboflavin
- Shikimate
- Thymidine
- NAD+
- Glycerol
- Pantothenate
- Mevalonate
- Pyruvate
- Deoxycytidine
- PFP
- Diacylglycerol
- Phosphoinositide 3
- Class I PI 3
- Class II PI 3
- Sphingosine
- Glucose-1,6-bisphosphate synthase
|
|
2.7.2: COOH acceptor |
- Phosphoglycerate
- Aspartate
|
|
2.7.3: N acceptor |
|
|
2.7.4: PO4 acceptor |
- Phosphomevalonate
- Adenylate
- Nucleoside-diphosphate
- Uridylate
- Guanylate
- Thiamine-diphosphate
|
|
|
2.7.6: diphosphotransferase
(P2O7) |
- Ribose-phosphate diphosphokinase
- Thiamine diphosphokinase
|
|
2.7.7: nucleotidyltransferase
(PO4-nucleoside) |
Polymerase |
DNA polymerase |
- DNA-directed DNA polymerase
- I
- II
- III
- IV
- V
- RNA-directed DNA polymerase
- Reverse transcriptase
- Telomerase
- DNA nucleotidylexotransferase/Terminal deoxynucleotidyl transferase
|
|
RNA nucleotidyltransferase |
- RNA polymerase/DNA-directed RNA polymerase
- RNA polymerase I
- RNA polymerase II
- RNA polymerase III
- RNA polymerase IV
- Primase
- RNA-dependent RNA polymerase
- PNPase
|
|
|
Phosphorolytic
3' to 5' exoribonuclease |
|
|
Uridylyltransferase |
- Glucose-1-phosphate uridylyltransferase
- Galactose-1-phosphate uridylyltransferase
|
|
Guanylyltransferase |
|
|
Other |
- Recombinase (Integrase)
- Transposase
|
|
|
2.7.8: miscellaneous |
Phosphatidyltransferases |
- CDP-diacylglycerol—glycerol-3-phosphate 3-phosphatidyltransferase
- CDP-diacylglycerol—serine O-phosphatidyltransferase
- CDP-diacylglycerol—inositol 3-phosphatidyltransferase
- CDP-diacylglycerol—choline O-phosphatidyltransferase
|
|
Glycosyl-1-phosphotransferase |
- N-acetylglucosamine-1-phosphate transferase
|
|
|
2.7.10-2.7.13: protein kinase
(PO4; protein acceptor) |
2.7.10: protein-tyrosine |
|
|
2.7.11: protein-serine/threonine |
- see serine/threonine-specific protein kinases
|
|
2.7.12: protein-dual-specificity |
- see serine/threonine-specific protein kinases
|
|
2.7.13: protein-histidine |
- Protein-histidine pros-kinase
- Protein-histidine tele-kinase
- Histidine kinase
|
|
|
- B
- enzm
- 1.1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 10
- 11
- 13
- 14
- 15-18
- 2.1
- 3.1
- 4.1
- 5.1
- 6.1-3
|
|
|
|
Viral proteins (early and late)
|
|
DNA |
Herpes simplex |
- Herpes simplex virus protein vmw65
- HHV capsid portal protein
|
|
Hepatitis B |
- HBsAg
- HBcAg
- HBx
- Hepatitis B virus DNA polymerase
|
|
Epstein–Barr |
- EBNA-1
- EBNA-2
- EBNA-3
- LMP-1
- LMP-2
- EBER
|
|
|
RNA |
Rotavirus |
- VNPs: NSP1
- NSP2
- NSP4
- NSP5
- NSP6
|
|
Influenza |
capsid: |
- matrix protein
- viral envelope
|
|
glycoprotein: |
- Influenza hemagglutinin
- Neuraminidase
|
|
|
Parainfluenza |
- Parainfluenza hemagglutinin-neuraminidase
|
|
Mumps |
- Mumps hemagglutinin-neuraminidase
|
|
Measles |
|
|
RSV |
- Respiratory syncytial virus G protein
|
|
Hepatitis C |
VSPs: |
|
|
VNPs: |
- P7
- NS2
- NS3
- NS4A
- NS4B
- NS5A
- NS5B
|
|
|
|
RT |
Structure and genome of HIV |
VSPs: |
- gag
- pol
- Integrase
- Reverse transcriptase
- HIV-1 protease
- env
|
|
VRAPs: |
- transactivators
- Nef
- Vif
- Vpu
|
|
|
|
Fusion protein |
|
|
|
|
cutn/syst (hppv/hiva, infl/zost/zoon)/epon
|
drug (dnaa, rnaa, rtva, vacc)
|
|
|
|