出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2017/05/21 16:32:33」(JST)
Hemolytic anemia | |
---|---|
Classification and external resources | |
Specialty | Hematology |
ICD-10 | D55-D59 |
ICD-9-CM | 282, 283, 773 |
DiseasesDB | 5534 |
MedlinePlus | 000571 |
eMedicine | med/979 |
MeSH | D000743 |
[edit on Wikidata]
|
Hemolytic anemia or haemolytic anaemia is a form of anemia due to hemolysis, the abnormal breakdown of red blood cells (RBCs), either in the blood vessels (intravascular hemolysis) or elsewhere in the human body (extravascular). It has numerous possible consequences, ranging from relatively harmless to life-threatening. The general classification of hemolytic anemia is either inherited or acquired. Treatment depends on the cause and nature of the breakdown.
Symptoms of hemolytic anemia are similar to other forms of anemia (fatigue and shortness of breath), but in addition, the breakdown of red cells leads to jaundice and increases the risk of particular long-term complications, such as gallstones and pulmonary hypertension.[citation needed]
In general, signs of anemia (pallor, fatigue, shortness of breath, and potential for heart failure) are present. In small children, failure to thrive may occur in any form of anemia. Certain aspects of the medical history can suggest a cause for hemolysis, such as drugs, consumption of fava beans due to Favism, the presence of prosthetic heart valve, or other medical illness.
Chronic hemolysis leads to an increased excretion of bilirubin into the biliary tract, which in turn may lead to gallstones. The continuous release of free hemoglobin has been linked with the development of pulmonary hypertension (increased pressure over the pulmonary artery); this, in turn, leads to episodes of syncope (fainting), chest pain, and progressive breathlessness. Pulmonary hypertension eventually causes right ventricular heart failure, the symptoms of which are peripheral edema (fluid accumulation in the skin of the legs) and ascites (fluid accumulation in the abdominal cavity).
They may be classified according to the means of hemolysis, being either intrinsic in cases where the cause is related to the red blood cell (RBC) itself, or extrinsic in cases where factors external to the RBC dominate.[1] Intrinsic effects may include problems with RBC proteins or oxidative stress handling, whereas external factors include immune attack and microvascular angiopathies (RBCs are mechanically damaged in circulation).
Hereditary (inherited) hemolytic anemia can be due to :
Acquired hemolytic anemia may be caused by immune-mediated causes, drugs and other miscellaneous causes.
Hemolytic anemia involves the following:
In a healthy person, a red blood cell survives 90 to 120 days in the circulation, so about 1% of human red blood cells break down each day[citation needed]. The spleen (part of the reticulo-endothelial system) is the main organ that removes old and damaged RBCs from the circulation. In healthy individuals, the breakdown and removal of RBCs from the circulation is matched by the production of new RBCs in the bone marrow.
In conditions where the rate of RBC breakdown is increased, the body initially compensates by producing more RBCs; however, breakdown of RBCs can exceed the rate that the body can make RBCs, and so anemia can develop. Bilirubin, a breakdown product of hemoglobin, can accumulate in the blood, causing jaundice.
In general, hemolytic anemia occurs as a modification of the RBC life cycle. That is, instead of being collected at the end of its useful life and disposed of normally, the RBC disintegrates in a manner allowing free iron-containing molecules to reach the blood. With their complete lack of mitochondria, RBCs rely on glycolysis for the materials needed to reduce oxidative damage. Any limitations of glycolysis can result in more susceptibility to oxidative damage and a short or abnormal lifecycle. If the cell is unable to signal to the reticuloendothelial phagocytes by externalizing phosphatidylserine, it is likely to lyse through uncontrolled means.[5][6][7]
The distinguishing feature of intravascular hemolysis is the release of RBC contents into the blood stream. The metabolism and elimination of these products, largely iron-containing compounds capable of doing damage through Fenton reactions, is an important part of the condition. Several reference texts exist on the elimination pathways, for example.[8][9] Free hemoglobin can bind to haptoglobin, and the complex is cleared from the circulation; thus, a decrease in haptoglobin can support a diagnosis of hemolytic anemia. Alternatively, hemoglobin may oxidize and release the heme group that is able to bind to either albumin or hemopexin. The heme is ultimately converted to bilirubin and removed in stool and urine.[8] Hemoglobin may be cleared directly by the kidneys resulting in fast clearance of free hemoglobin but causing the continued loss of hemosiderin loaded renal tubular cells for many days.
Additional effects of free hemoglobin seem to be due to specific reactions with NO.[10]
The diagnosis of hemolytic anemia can be suspected on the basis of a constellation of symptoms and is largely based on examination of a peripheral blood smear and a number of laboratory studies. Symptoms of hemolytic anemia include those that can occur in all anemias as well as the specific consequences of hemolysis. All anemias can cause fatigue, shortness of breath, decreased ability to exercise when severe. Symptoms specifically related to hemolysis include jaundice and dark colored urine due to the presence of hemoglobin (hemaglobinuria). When restricted to the morning hemaglobinuria may suggest paroxysmal nocturnal haemoglobinuria. Direct examination of blood under a microscope in a peripheral blood smear may demonstrate red blood cell fragments called schistocytes, red blood cells that look like spheres (spherocytes), and/or red blood cells missing small pieces (bite cells). An increased number of newly made red blood cells (reticulocytes) may also be a sign of bone marrow compensation for anemia. Laboratory studies commonly used to investigate hemolytic anemia include blood tests for breakdown products of red blood cells, bilirubin and lactate dehydrogenase, a test for the free hemoglobin binding protein haptoglobin, and the direct Coombs test to evaluate antibody binding to red blood cells suggesting autoimmune hemolytic anemia.
This section needs expansion. You can help by adding to it. (March 2010) |
Definitive therapy depends on the cause:
Hemolytic anemia affects nonhuman species as well as humans. It has been found, in a number of animal species, to result from specific triggers.[12]
Some notable cases include hemolytic anemia found in black rhinos kept in captivity, with the disease, in one instance, affecting 20% of captive rhinos at a specific facility.[13][14][15] The disease is also found in wild rhinos.[16]
Dogs and cats differ slightly from humans in some details of their RBC composition and have altered susceptibility to damage, notably, increased susceptibility to oxidative damage from consumption of onion. Garlic is less toxic to dogs than onion.[17]
|website=
(help)
Diseases of red blood cells (D50–69,74, 280–287)
|
|||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
↑ |
|
||||||||||||||||||||||||||
↓ |
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
関連記事 | 「anaemia」「haemolytic」 |
溶血性の
.