出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2012/09/09 13:58:13」(JST)
This article may require cleanup to meet Wikipedia's quality standards. No cleanup reason has been specified. Please help improve this article if you can. (November 2008) |
Erythropoiesis is the process by which red blood cells (erythrocytes) are produced. It is stimulated by decreased O2 in circulation, which is detected by the kidneys, which then secrete the hormone erythropoietin.[2] This hormone stimulates proliferation and differentiation of red cell precursors, which activates increased erythropoiesis in the hemopoietic tissues, ultimately producing red blood cells.[2] In postnatal birds and mammals (including humans), this usually occurs within the red bone marrow.[2] In the early fetus, erythropoiesis takes place in the mesodermal cells of the yolk sac. By the third or fourth month, erythropoiesis moves to the spleen and liver.[3] After seven months, erythropoiesis occurs in the bone marrow. Increased level of physical activity can cause an increase in erythropoiesis.[4] However, in humans with certain diseases and in some animals, erythropoiesis also occurs outside the bone marrow, within the spleen or liver. This is termed extramedullary erythropoiesis.
The bone marrow of essentially all the bones produces RBCs until a person is around five years old. The tibia and femur cease to be important sites of hematopoiesis by about age 25; the vertebrae, sternum, pelvis and ribs, and cranial bones continue to produce red blood cells throughout life.
Contents
|
In the process of red blood cell maturation, a cell undergoes a series of differentiations. The following stages 1–7 of development all occur within the bone marrow:
The cell is released from the bone marrow after stage 7, and so of circulating red blood cells there are ~1% reticulocytes. After 1–2 days these ultimately become "erythrocytes" or mature red blood cells.
These stages correspond to specific appearances of the cell when stained with Wright's stain and examined by light microscopy, but correspond to other biochemical changes.
In the process of maturation a basophilic pronormoblast is converted from a cell with a large nucleus and a volume of 900 fL to an enucleated disc with a volume of 95 fL. By the reticulocyte stage, the cell has extruded its nucleus, but is still capable of producing hemoglobin.
Essential for the maturation of RBC'S are two vitamins: B12 and folic acid. Lack of either of these causes maturation failure in the process of erythropoiesis, which manifests clinically as reticulocytopenia, an abnormally low amount of reticulocytes.
The following characteristics can be seen changing in the erythrocytes when they are maturing:
A feedback loop involving erythropoietin helps regulate the process of erythropoiesis so that, in non-disease states, the production of red blood cells is equal to the destruction of red blood cells and the red blood cell number is sufficient to sustain adequate tissue oxygen levels but not so high as to cause sludging, thrombosis, or stroke. Erythropoietin is produced in the kidney and liver in response to low oxygen levels. In addition, erythropoietin is bound by circulating red blood cells; low circulating numbers lead to a relatively high level of unbound erythropoietin, which stimulates production in the bone marrow.
Recent studies have also shown that the peptide hormone hepcidin may play a role in the regulation of hemoglobin production, and thus affect erythropoiesis. The liver produces hepcidin. Hepcidin controls iron absorption in the gastrointestinal tract and iron release from reticuloendothelial tissue. Iron must be released from macrophages in the bone marrow to be incorporated into the heme group of hemoglobin in erythrocytes. There are colony forming units that the cells follow during their formation. These cells are referred to as the committed cells including the granulocyte monocyte colony forming units
Also, loss of function of the erythropoietin receptor or JAK2 in mice cells causes failure in erythropoiesis, so production of red blood cells in embryos and growth is disrupted.
Also, if there is no feedback inhibition, such as SOCS (Suppressors of Cytokine Signaling) proteins in the system, that would cause giantism in mice.[6][7]
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「赤血球生成」「erythropoietic」「赤血球形成」「赤血球新生」 |
拡張検索 | 「dyserythropoiesis」「erythropoiesis stimulating agent」「erythropoiesis-stimulating factor」 |
.