出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2013/02/10 17:26:47」(JST)
Brain: Corpus callosum | ||
---|---|---|
Corpus callosum from above. (Anterior portion is at the top of the image.) | ||
Median sagittal section of brain (person faces to the left). Corpus callosum visible at center, in light gray | ||
Gray's | subject #189 828 | |
NeuroNames | hier-173 | |
MeSH | Corpus+Callosum | |
NeuroLex ID | birnlex_1087 |
The corpus callosum (Latin: tough body), also known as the colossal commissure, is a wide, flat bundle of neural fibers beneath the cortex in the eutherian brain at the longitudinal fissure. It connects the left and right cerebral hemispheres and facilitates interhemispheric communication. It is the largest white matter structure in the brain, consisting of 200–250 million contralateral axonal projections.
Contents
|
The posterior portion of the corpus callosum is called the splenium; the anterior is called the genu (or "knee"); between the two is the truncus, or "body", of the corpus callosum. The part between the body and the splenium is often markedly thinned and thus referred to as the "isthmus". The rostrum is the part of the corpus callosum that projects posteriorly and inferiorly from the anteriormost genu, as can be seen on the sagittal image of the brain displayed on the right. The rostrum is so named for its resemblance to a bird's beak.
Thinner axons in the genu connect the prefrontal cortex between the two halves of the brain. Thicker axons in the midbody of the corpus callosum and in the splenium interconnect areas of the premotor and supplementary motor regions and motor cortex, with proportionally more corpus dedicated to supplementary motor regions. The posterior body of the corpus communicates somatosensory information between the two halves of the parietal lobe and visual center at the occipital lobe.[1][2]
The corpus callosum is found only in placental mammals (the eutherians), while it is absent in monotremes and marsupials,[3] as well as other vertebrates such as birds, reptiles, amphibians and fish[4] (other groups do have other brain structures that allow for communication between the two hemispheres, such as the anterior commissure, which serves as the primary mode of interhemispheric communication in marsupials,[5][6] and which carries all the commissural fibers arising from the neocortex(also known as the neopallium), whereas in placental mammals the anterior commissure carries only some of these fibers[7]). In primates, the speed of nerve transmission depends on its degree of myelination, or lipid coating. This is reflected by the diameter of the nerve axon. In most primates, axonal diameter increases in proportion to brain size to compensate for the increased distance to travel for neural impulse transmission. This allows the brain to coordinate sensory and motor impulses. However, the scaling of overall brain size and increased myelination has not occurred between chimpanzees and humans. This has resulted in the human corpus callosum's requiring double the time for interhemispheric communication as a macaque's.[1]
The fibrous bundle that the corpus callosum appears as, can and does increase to such an extent in humans that it encroaches upon and wedges apart the hippocampal structures.[8]
Agenesis of the corpus callosum (ACC) is a rare congenital disorder in which the corpus callosum is partially or completely absent. ACC is usually diagnosed within the first two years of life and may manifest as a severe syndrome in infancy or childhood, as a milder condition in young adults, or as an asymptomatic incidental finding. Initial symptoms of ACC usually include seizures, which may be followed by feeding problems and delays in holding the head erect, sitting, standing, and walking. Other possible symptoms may include impairments in mental and physical development, hand-eye coordination, and visual and auditory memory. Hydrocephaly may also occur. In mild cases, symptoms such as seizures, repetitive speech, or headaches may not appear for years.
ACC is usually non-fatal. Treatment usually involves management of symptoms, such as hydrocephaly and seizures, if they occur. Although many children with the disorder will lead normal lives and have average intelligence, careful neuropsychological testing reveals subtle differences in higher cortical function compared to individuals of the same age and education without ACC. Children with ACC accompanied by developmental delay and/or seizure disorders should be screened for metabolic disorders.[9]
In addition to agenesis of the corpus callosum, similar conditions are hypogenesis (partial formation), dysgenesis (malformed), and hypoplasia (underdevelopment, including too thin).
Recent studies have also linked possible correlations between corpus callosum malformation and autism spectrum disorders (ASD).[10]
Kim Peek, a savant and the inspiration behind the movie Rain Man, was found with agenesis of the corpus callosum.
The corpus callosum and its relation to sex has been a subject of debate in the scientific and lay communities for over a century. Initial research in the early 20th century claimed the corpus to be different in size between men and women. That research was in turn questioned, and ultimately gave way to more advanced imaging techniques that appeared to refute earlier correlations. The new advent of physiologic based imaging has altered the paradigm dramatically, with the relationship between gender and the corpus callosum becoming a subject of increasing numbers of studies in recent years.
The first study of the corpus with relation to gender was by R. B. Bean, a Philadelphia anatomist, who suggested in 1906 that "exceptional size of the corpus callosum may mean exceptional intellectual activity" and that there were measurable differences between men and women. Perhaps reflecting the political climate of the times, he went on to claim differences in the size of the callosum across different races. His research was ultimately refuted by Franklin Mall, the director of his own laboratory.[11]
Of more mainstream impact was a 1982 Science article by Holloway and Utamsing that suggested sex difference in human brain morphology, which related to differences in cognitive ability.[12] Time published an article in 1992 that suggested that, because the corpus is "often wider in the brains of women than in those of men, it may allow for greater cross-talk between the hemispheres—possibly the basis for women’s intuition."[13]
More recent publications in the psychology literature have raised doubt as to whether the anatomic size of the corpus is actually different. A meta-analysis of 49 studies since 1980 found that, contrary to de Lacoste-Utamsing and Holloway, no sex difference could be found in the size of the corpus callosum, whether or not account was taken of larger male brain size.[11] A study in 2006 using thin slice MRI showed no difference in thickness of the corpus when accounting for the size of the subject.[14]
The ability to evaluate the form and function of the human mind has undergone almost exponential growth and a paradigm shift in recent years. Magnetic resonance imaging, for example, is now being used to analyze physiology in addition to anatomy. Using diffusion tensor sequences on MRI machines, the rate that molecules diffuse in and out of a specific area of tissue, directionality or anisotropy, and rates of metabolism can be measured. These sequences have found consistent sex differences in human corpus callosal morphology and microstructure.[which?][15][16][17]
Morphometric analysis has also been used to study specific 3-dimensional mathematical relationships with MRIs, and have found consistent and statistically significant differences across genders.[18][19] Specific algorithms have found significant gender differences in over 70% of cases in one review.[20]
Research has been done on the shape of the corpus callosum in those with gender identity disorder. Researchers were able to demonstrate that the shape dimorphism of the corpus callosum at birth in biological males who self-identified as female was actually reversed, and that the same held true for biological females who self-identified as male. The publishers of this article argued that the shape of the corpus callosum defined the mental sex of individuals over their physical sex.[20]
The relationship between the corpus callosum and gender remains an active subject of debate in the scientific and lay community.
The front portion of the corpus callosum has been reported to be significantly larger in musicians than non-musicians, [21] and to be 0.75 square centimeters [22] or 11% larger in left-handed and ambidextrous people than right-handed people.[23][24] This difference is evident in the anterior and posterior regions of the corpus callosum but not in the splenium.[22] Other magnetic resonance morphometric study showed that corpus callosum size correlates positively with verbal memory capacity and semantic coding test performance.[25] Research has shown that children with dyslexia tend to have smaller and less developed corpus callosums than their non-dyslexic counterparts.[26][27]
The symptoms of refractory epilepsy can be reduced by cutting the corpus callosum in an operation known as a corpus callosotomy.[28] This is usually reserved for cases in which complex or grand mal seizures are produced by an epileptogenic focus on one side of the brain, causing an interhemispheric electrical storm. The work up for this procedure involves an electroencephalogram, MRI, PET scan, and evaluation by a specialized neurologist, neurosurgeon, psychiatrist, and neuroradiologist before surgery can be considered.[29]
The cerebral cortex is divided into two hemispheres and is connected by the corpus callosum. A procedure that helps patients to alleviate the severity of seizures is called split brain procedure. The result is that a seizure that starts in one hemisphere is isolated in that hemisphere since there is no longer a connection to the other side. However, this procedure is dangerous and risky.
Corpus callosum
Corpus callosum
Corpus callosum
Coronal T2 (grey scale inverted) MRI of the brain at the level of the caudate nuclei emphasizing corpus callosum
DTI Corpus callosum
Ultrasound sagittal scan of the fetal head at 19 weeks of pregnancy. Visualization of median structures including the corpus callosum and the vermis cerebellaris.
Wikimedia Commons has media related to: Corpus callosum |
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「脳梁」「外側縦条」「内側縦条」「callosal」「callosal body」 |
関連記事 | 「callosum」「corpus」 |
Henry Gray (1825-1861). Anatomy of the Human Body. 1918.
Henry Gray (1825-1861). Anatomy of the Human Body. 1918.
Henry Gray (1825-1861). Anatomy of the Human Body. 1918.
Henry Gray (1825-1861). Anatomy of the Human Body. 1918.
.