出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/09/13 01:14:43」(JST)
Confocal microscopy | |
---|---|
Diagnostics | |
MeSH | D018613 |
OPS-301 code | 3-301 |
It has been suggested that Confocal laser scanning microscopy be merged into this article. (Discuss) Proposed since March 2012. |
Confocal microscopy is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of adding a spatial pinhole placed at the confocal plane of the lens to eliminate out-of-focus light.[1] It enables the reconstruction of three-dimensional structures from the obtained images. This technique has gained popularity in the scientific and industrial communities and typical applications are in life sciences, semiconductor inspection and materials science.
The principle of confocal imaging was patented in 1957 by Marvin Minsky[2][3] and aims to overcome some limitations of traditional wide-field fluorescence microscopes. In a conventional (i.e., wide-field) fluorescence microscope, the entire specimen is flooded evenly in light from a light source. All parts of the specimen in the optical path are excited at the same time and the resulting fluorescence is detected by the microscope's photodetector or camera including a large unfocused background part. In contrast, a confocal microscope uses point illumination (see Point Spread Function) and a pinhole in an optically conjugate plane in front of the detector to eliminate out-of-focus signal - the name "confocal" stems from this configuration. As only light produced by fluorescence very close to the focal plane can be detected, the image's optical resolution, particularly in the sample depth direction, is much better than that of wide-field microscopes. However, as much of the light from sample fluorescence is blocked at the pinhole, this increased resolution is at the cost of decreased signal intensity – so long exposures are often required.
As only one point in the sample is illuminated at a time, 2D or 3D imaging requires scanning over a regular raster (i.e., a rectangular pattern of parallel scanning lines) in the specimen. The achievable thickness of the focal plane is defined mostly by the wavelength of the used light divided by the numerical aperture of the objective lens, but also by the optical properties of the specimen. The thin optical sectioning possible makes these types of microscopes particularly good at 3D imaging and surface profiling of samples.
Four types of confocal microscopes are commercially available:
Each of these classes of confocal microscope have particular advantages and disadvantages. Most systems are either optimized for recording speed (i.e. video capture) or high spatial resolution. Confocal laser scanning microscopes can have a programmable sampling density and very high resolutions while Nipkow and PAM use a fixed sampling density defined by the camera's resolution. Imaging frame rates are typically slower for single point laser scanning systems than spinning-disk or PAM systems. Commercial spinning-disk confocal microscopes achieve frame rates of over 50 per second[5] – a desirable feature for dynamic observations such as live cell imaging.
In practice, Nipkow and PAM allow multiple pinholes scanning the same area in parallel[6] as long as the pinholes are sufficiently far apart.
Cutting-edge development of confocal laser scanning microscopy now allows better than standard video rate (60 frames per second) imaging by using multiple microelectromechanical scanning mirrors.
Confocal X-ray fluorescence imaging is a newer technique that allows control over depth, in addition to horizontal and vertical aiming, for example, when analyzing buried layers in a painting.[7]
The point spread function of the pinhole is an ellipsoid, several times as long as it is wide. This limits the axial resolution of the microscope. One technique of overcoming this is 4π microscopy where incident and or emitted light are allowed to interfere from both above and below the sample to reduce the volume of the ellipsoid. An alternative technique is confocal theta microscopy. In this technique the cone of illuminating light and detected light are at an angle to each other (best results when they are perpendicular). The intersection of the two point spread functions gives a much smaller effective sample volume. From this evolved the single plane illumination microscope. Additionally deconvolution may be employed using an experimentally derived point spread function to remove the out of focus light, improving contrast in both the axial and lateral planes.
There are confocal variants that achieve resolution below the diffraction limit such as stimulated emission depletion microscopy (STED). Besides this technique a broad variety of other (not confocal based) super-resolution techniques is available like PALM, (d)STORM, SIM, and so on. They all have their own advantages like ease of use, resolution and the need for special equipment/buffers/fluorophores/... .
To image samples at low temperature, two main approaches have been used, both based on the laser scanning confocal microscopy architecture. One approach is to use a continuous flow cryostat: only the sample is at low temperature and it is optically addressed through a transparent window.[8] Another possible approach is to have part of the optics (especially the microscope objective) in a cryogenic storage dewar.[9] This second approach, although more cumbersome, guarantees better mechanical stability and avoids the losses due to the window.
β-tubulin in Tetrahymena (a ciliated protozoan).
Partial surface profile of a 1-Euro coin, measured with a Nipkow disk confocal microscope.
Reflection data for 1-Euro coin.
Cross section at y=200 through profile of 1-Euro coin.
Colour coded image of actin filaments in a cancer cell.
In 1940 Hans Goldmann, ophthalmologist in Bern, Switzerland, developed a slit lamp system to document eye examinations.[10] This system is considered by some later authors as the first confocal optical system.[11][12]
In 1943 Zyun Koana published a confocal system.[13] The article is written in Japanese before the Tōyō kanji-reform and no translation is available,[11] so it is not clear what this system actually is. A figure in this publication, however, clearly shows a confocal transmission beam path. In 1951 Hiroto Naora, a colleague of Koana, described a confocal microscope in the journal Science for spectrophotometry.[14]
The first confocal scanning microscope was built by Marvin Minsky in 1955 and a patent was filed in 1957. The scanning of the illumination point in the focal plane was achieved by moving the stage. No scientific publication was submitted and no images made with it were preserved.[15][16]
In the 1960s, the Czechoslovak Mojmír Petráň from the Medical Faculty of the Charles University in Plzeň developed the Tandem-Scanning-Microscope, the first commercialized confocal microscope. It was sold by a small company in Czechoslovakia and in the USA by Tracor-Northern (later Noran). It uses a rotating Nipkow disk to generate multiple excitation and emission pinholes.[12][17]
The Czechoslovak patent was filed 1966 by Petráň and Milan Hadravský, a Czechoslovak coworker. A first scientific publication with data and images generated with this microscope was published in the journal Science in 1967. Authors were M. David Egger from Yale University and Petráň.[18] In the footnotes of this paper it is mentioned that Petráň designed the microscope and supervised its construction and that he was partially a „research associate“ at Yale. A second publication from 1968 described theory and technical details of the instrument and had Hadravský and Robert Galambos, the head of the group at Yale, as additional authors.[19] In 1970 the US patent was granted which was filed in 1967.[20]
In 1969 and 1971, M. David Egger and Paul Davidovits from Yale University, published two papers describing the first confocal laser scanning microscope.[21][22] It was a point scanner, meaning just one illumination spot was generated. It used epi-Illumination-reflection microscopy for the observation of nerve tissue. A 5 mW Helium-Neon-Laser with 633 nm light was reflected by a semi-transparent mirror towards the objective. The objective was a simple lens with a focal length of 8.5 mm. As opposed to all earlier and most later systems, the sample was scanned by movement of this lens (objective scanning), leading to a movement of the focal point. Reflected light came back to the semitransparent mirror, the transmitted part was focused by another lens on the detection pinhole behind which a photomultiplier tube was placed. The signal was visualized by a CRT of an oscilloscope, the cathode ray was moved simultaneously with the objective. A special device allowed to make Polaroid photos, three of which were shown in the 1971 publication.
The authors speculate about fluorescent dyes for in vivo investigations. They cite Minsky‘s patent, thank Steve Baer, at the time a doctoral student at the Albert Einstein School of Medicine in New York City where he developed a confocal line scanning microscope,[23] for suggesting to use a laser with ‚Minsky‘s microscope‘ and thank Galambos, Hadravsky and Petráň for discussions leading to the development of their microscope. The motivation for their development was that in the Tandem-Scanning-Microscope only a fraction of 10−7 of the illumination light participates in generating the image in the eye piece. Thus, image quality was not sufficient for most biological investigations.[11][24]
In 1977 Colin J. R. Sheppard and A. Choudhury, Oxford, UK, published a theoretical analysis of confocal and laser-scanning microscopes.[25] It is probably the first publication using the term „confocal microscope“.[11][24]
In 1978, the brothers Christoph Cremer and Thomas Cremer published a design for a confocal laser-scanning-microscope using fluorescent excitation with electronic autofocus. They also suggested a laser point illumination by using a „4π-point-hologramme“.[24][26]
In 1978 and 1980, the Oxford-group around Colin Sheppard and Tony Wilson described a confocal with epi-laser-illumination, stage scanning and photomultiplier tubes as detectors. The stage could move along the optical axis, allowing optical serial sections.[24]
In 1979 Fred Brakenhoff and coworkers demonstrated that the theoretical advantages of optical sectioning and resolution improvement are indeed achievable in practice. In 1985 this group became the first to publish convincing images taken on a confocal microscope that were able to answer biological questions.[27] Shortly after many more groups started using confocal microscopy to answer scientific questions that until now had remained a mystery due to technological limitations.
In 1983 I. J. Cox und C. Sheppard from Oxford published the first work whereby a confocal microscope was controlled by a computer. The first commercial laser scanning microscope, the stage-scanner SOM-25 was offered by Oxford Optoelectronics (after several take-overs acquired by BioRad) starting in 1982. It was based on the design of the Oxford group.[12][28]
In the Mid-1980's, W. B. Amos, J. G. White and colleagues in Cambridge built the first confocal beam scanning microscope. The stage with the sample was not moving, instead the illumination spot was, allowing faster image acquisition: four images per second with 512 lines each. Hugely magnified intermediate images, due to a 1-2 meter long beam path, allowed the use of a conventional iris diaphragm as a ‘pinhole’, with diameters ~ 1 mm. First micrographs were taken with long-term exposure on film before a digital camera was added. A further improvement allowed zooming into the preparation for the first time. Zeiss, Leitz and Cambridge Instruments had no interest in a commercial production.[citation needed] The Medical Research Council (MRC) finally sponsored development of a prototype. The design was acquired by Bio-Rad, amended with computer control and commercialized as ‘MRC 500’. The successor MRC 600 was later the basis for the development of the first two-photon-fluorescent microscope developed 1990 at Cornell University.[27]
Developments at the University of Stockholm around the same time led to a commercial clsm distributed by the Swedish company Sarastro. The venture was acquired in 1990 by Molecular Dynamics,[29] but the clsm was eventually discontinued. In Germany, Heidelberg Instruments, founded in 1984, developed a clsm which was initially meant for industrial applications, rather than Biology.[30] This instrument was taken over in 1990 by Leica Lasertechnik. Zeiss already had a non-confocal flying-spot laser scanning microscope on the market which was upgraded to a confocal. A report from 1990,[31] mentioning “some” manufacturers of confocals lists: Sarastro, Technical Instrument, Meridian Instruments, Bio-Rad, Leica, Tracor-Northern and Zeiss.[27]
|title=
(help) The article is available on the website of the journal. The pdf-file labeled „P359 - 402“ is 19020 kilobyte in size and contains also neighboring articles from the same issue. Figure 1b of the article shows the scheme of a confocal transmission beam path.Wikimedia Commons has media related to Confocal microscopy. |
Library resources about Confocal microscopy |
|
|
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「confocal microscopy」「共焦点顕微鏡」 |
関連記事 | 「microscope」 |
共焦点顕微鏡、共焦点顕微鏡観察、共焦点顕微鏡法、共焦点顕微法
.