Ehrlichiaceae |
Scientific classification |
Kingdom: |
Bacteria |
Phylum: |
Proteobacteria |
Class: |
Alpha Proteobacteria |
Order: |
Rickettsiales |
Family: |
Ehrlichiaceae |
Genus: |
Anaplasma |
Species: |
A. phagocytophilum |
Binomial name |
Anaplasma phagocytophilum
|
Anaplasma phagocytophilum (formerly Ehrlichia phagocytophilum)[1] is a gram-negative bacterium that is unusual in its tropism to neutrophils. It causes anaplasmosis in sheep and cattle, also known as tick-borne fever and pasture fever, and also causes the zoonotic disease human granulocytic anaplasmosis.[2]
Light micrograph of Anaplasma phagocytophilum cultured in human promyelocytic cell line HL-60, showing A. phagocytophilum morulae as basophilic and intracytoplasmic inclusions (arrows). Wright–Giemsa stain, original magnification x1,000.
Anaplasma phagocytophilum is a Gram-negative, obligate bacterium of neutrophils. It causes human granulocytic anaplasmosis, which is a tick-borne rickettsial disease. Because this bacterium invades neutrophils, it has a unique adaptation and pathogenetic mechanism.[3]
Contents
- 1 Biology
- 2 Role in human disease
- 3 Clinical signs in animals
- 4 Bacterial mechanism
- 5 Laboratory diagnosis
- 6 Antibiotic therapy
- 7 References
- 8 External links
Biology
Anaplasma phagocytophilum is a small, obligate, intracellular bacterium with a Gram-negative cell wall. It is 0.2–1.0 μm and lacks a lipopolysaccharide biosynthetic machinery. The bacterium first resides in an early endosome, where it acquires nutrients for binary fission and grows into small groups called morulae. This bacterium prefers to grow within myeloid or granulocytic cells.[3]
Role in human disease
Anaplasma phagocytophilum causes human granulocytic anaplasmosis. This disease was first identified in 1990, although this pathogen was known to cause veterinary disease since 1932. Since 1990, incidence of this disease has increased, and it is now recognized in Europe. This disease was first identified due to a Wisconsin patient who died with a severe febrile illness two weeks after a tick bite. During the last stage of the infection, a group of small bacteria were seen within the neutrophils in the blood. Other symptoms include fever, headache, absence of skin rash, leucopenia, thrombocytopenia and mild injury to the liver.[3]
Clinical signs in animals
The disease is multisystemic, but the most severe changes are anaemia and leukopenia. This organism causes lameness which in often confused with Lyme disease, another tick-borne illness. It is a vector borne zoonotic disease whose morula can be visualized within neutrophils (a type of white blood cell) from the peripheral blood and synovial fluid. Can cause lethargy, ataxia, inappetence, and weak or painful limbs.[2]
Bacterial mechanism
Anaplasma phagocytophilum binds to fucosylated and sialylated scaffold proteins on neutrophil and granulocyte surfaces. A type IV secretion apparatus is known to help in the transfer of molecules between the bacterium and the host. The most studied ligand is PSGL-1 (CD162). The bacterium adheres to PSGL-1 (CD162) through 44-kDa major surface protein-2 (Msp2). After the bacterium enters the cell, the endosome stops maturation and does not accumulate markers of late endosomes or phagolysosomes. Because of this, the vacuole does not become acidified or fused to lysosomes. A. phagocytophilum then divides until cell lysis or when the bacteria leave to infect other cells.[3]
This bacterium has the ability to affect neutrophils by altering the function of the host cell. It can survive the first encounter with the host cell by detoxifying superoxide produced by neutrophil phagocyte oxidase assembly. It also disrupts normal neutrophil function, such as endothelial cell adhesion, transmigration, motility, degranulation, respiratory burst, and phagocytosis.[3] It causes an increase in the secretion of IL-8, a chemoattractant that increases the phagocytosis of neutrophils. The purpose of this is to increase bacterial dissemination into the neutrophil.[4]
Laboratory diagnosis
Three tests can be performed to determine an A. phagocytophilum infection:
- Indirect immunofluorescence assay is the principal test used to detect infection. The acute and convalescent phase serum samples can be evaluated to look for a four-fold change in antibody titer to A. phagocytophilum.
- Intracellular Inclusions (morulae) are visualized in granulocytes on Wright- or Giemsa- stained blood smears.
- Polymerase chain reaction assays are used to detect A. phagocytophilum DNA.[5]
Antibiotic therapy
Patients suffering from human granulocytic anaplasmosis (HGA) undergo doxycycline therapy, 100 mg twice daily until the patient’s fever subsides for at least three days. This drug has been the most beneficial to these patients infected with the bacteria. Some other tetracycline drugs are also effective. In general, patients with symptoms of HGA and unexplained fever after a tick exposure should receive empiric doxycycline therapy while their diagnostic tests are pending, especially if they experience leukopenia and/or thrombocytopenia.[5]
In animals, antibiotics such as oxytetracycline, sulphamethazine, sulphadimidine, doxycycline and trimethoprim-sulphonamides have been used.[2]
References
- ^ Dumler JS, Barbet AF, Bekker CP; et al. (2001). "Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and 'HGE agent' as subjective synonyms of Ehrlichia phagocytophila". Int. J. Syst. Evol. Microbiol. 51 (Pt 6): 2145–65. doi:10.1099/00207713-51-6-2145. PMID 11760958.
- ^ a b c Tick-Borne Fever reviewed and published by WikiVet, accessed 12 October 2011.
- ^ a b c d e Dumler JS, Choi KS, Garcia-Garcia JC; et al. (December 2005). "Human granulocytic anaplasmosis and Anaplasma phagocytophilum". Emerging Infect. Dis. 11 (12): 1828–34. doi:10.3201/eid1112.050898. PMC 3367650. PMID 16485466.
- ^ Thomas V, Fikrig E (July 2007). "Anaplasma phagocytophilum specifically induces tyrosine phosphorylation of ROCK1 during infection". Cell. Microbiol. 9 (7): 1730–7. doi:10.1111/j.1462-5822.2007.00908.x. PMID 17346310.
- ^ a b "Human Anaplasmosis Information for Health Professionals: Diagnostic tests". Diseases. Minnesota Department of Health.
External links
- Anaplasma phagocytophilum HZ Genome Page
- Anaplasma phagocytophilum at the US National Library of Medicine Medical Subject Headings (MeSH)
- Walid MS, Ajjan M, Patel N (2007). "Borreliosis And Human Granulocytic Anaplasmosis Coinfection With Positive Rheumatoid Factor And Monospot Test: Case-Report". The Internet Journal of Infectious Diseases 6 (1). doi:10.5580/1efc.
- Zhang L, Liu Y, Ni D; et al. (November 2008). "Nosocomial transmission of human granulocytic anaplasmosis in China". JAMA 300 (19): 2263–70. doi:10.1001/jama.2008.626. PMID 19017912.
- Infectious diseases
- Bacterial disease: Proteobacterial G−
- primarily A00–A79, 001–041, 080–109
|
|
α |
Rickettsiales |
Rickettsiaceae/
(Rickettsioses) |
Typhus |
- Rickettsia typhi
- Rickettsia prowazekii
- Epidemic typhus, Brill–Zinsser disease, Flying squirrel typhus
|
|
Spotted
fever |
Tick-borne |
- Rickettsia rickettsii
- Rocky Mountain spotted fever
- Rickettsia conorii
- Rickettsia japonica
- Rickettsia sibirica
- Rickettsia australis
- Rickettsia honei
- Flinders Island spotted fever
- Rickettsia africae
- Rickettsia parkeri
- Rickettsia aeschlimannii
- Rickettsia aeschlimannii infection
|
|
Mite-borne |
- Rickettsia akari
- Orientia tsutsugamushi
|
|
Flea-borne |
|
|
|
|
Anaplasmataceae |
- Ehrlichiosis: Anaplasma phagocytophilum
- Human granulocytic anaplasmosis, Anaplasmosis
- Ehrlichia chaffeensis
- Human monocytotropic ehrlichiosis
- Ehrlichia ewingii
- Ehrlichiosis ewingii infection
|
|
|
Rhizobiales |
Brucellaceae |
|
|
Bartonellaceae |
- Bartonellosis: Bartonella henselae
- Bartonella quintana
- either henselae or quintana
- Bartonella bacilliformis
- Carrion's disease, Verruga peruana
|
|
|
|
β |
Neisseriales |
M+ |
- Neisseria meningitidis/meningococcus
- Meningococcal disease, Waterhouse–Friderichsen syndrome, Meningococcal septicaemia
|
|
M- |
- Neisseria gonorrhoeae/gonococcus
|
|
ungrouped: |
- Eikenella corrodens/Kingella kingae
- Chromobacterium violaceum
- Chromobacteriosis infection
|
|
|
Burkholderiales |
- Burkholderia pseudomallei
- Burkholderia mallei
- Burkholderia cepacia complex
- Bordetella pertussis/Bordetella parapertussis
|
|
|
γ |
Enterobacteriales
(OX-) |
Lac+ |
- Klebsiella pneumoniae
- Rhinoscleroma, Klebsiella pneumonia
- Klebsiella granulomatis
- Klebsiella oxytoca
- Escherichia coli: Enterotoxigenic
- Enteroinvasive
- Enterohemorrhagic
- O157:H7
- O104:H4
- Hemolytic-uremic syndrome
- Enterobacter aerogenes/Enterobacter cloacae
|
|
Slow/weak |
- Serratia marcescens
- Citrobacter koseri/Citrobacter freundii
|
|
Lac- |
H2S+ |
- Salmonella enterica
- Typhoid fever, Paratyphoid fever, Salmonellosis
|
|
H2S- |
- Shigella dysenteriae/sonnei/flexneri/boydii
- Shigellosis, Bacillary dysentery
- Proteus mirabilis/Proteus vulgaris
- Yersinia pestis
- Yersinia enterocolitica
- Yersinia pseudotuberculosis
- Far East scarlet-like fever
|
|
|
|
Pasteurellales |
Haemophilus: |
- H. influenzae
- Haemophilus meningitis
- Brazilian purpuric fever
- H. ducreyi
- H. parainfluenzae
|
|
Pasteurella multocida |
- Pasteurellosis
- Actinobacillus
|
|
Aggregatibacter actinomycetemcomitans |
|
|
|
Legionellales |
- Legionella pneumophila/Legionella longbeachae
- Coxiella burnetii
|
|
Thiotrichales |
|
|
Vibrionaceae |
- Vibrio cholerae
- Vibrio vulnificus
- Vibrio parahaemolyticus
- Vibrio alginolyticus
- Plesiomonas shigelloides
|
|
Pseudomonadales |
- Pseudomonas aeruginosa
- Moraxella catarrhalis
- Acinetobacter baumannii
|
|
Xanthomonadaceae |
- Stenotrophomonas maltophilia
|
|
Cardiobacteriaceae |
|
|
Aeromonadales |
- Aeromonas hydrophila/Aeromonas veronii
|
|
|
ε |
Campylobacterales |
- Campylobacter jejuni
- Campylobacteriosis, Guillain–Barré syndrome
- Helicobacter pylori
- Peptic ulcer, MALT lymphoma, Gastric cancer
- Helicobacter cinaedi
|
|
|
Index of bacterial disease
|
|
Description |
|
|
Disease |
- Gram-positive firmicutes
- Gram-positive actinobacteria
- Gram-negative proteobacteria
- Gram-negative non-proteobacteria
- Cholera
- Tuberculosis
|
|
Treatment |
- Antibiotics
- cell wall
- nucleic acid
- mycobacteria
- protein synthesis
- other
- Antibodies
|
|
|