Adenosine deaminase |
Ribbon diagram of bovine adenosine deaminase. Zinc ion visible at center. From PDB: 1VFL
|
Available structures |
PDB |
Ortholog search: PDBe, RCSB |
List of PDB id codes |
1M7M, 3IAR
|
|
|
Identifiers |
Symbol |
ADA |
External IDs |
OMIM: 608958 MGI: 87916 HomoloGene: 37249 ChEMBL: 1910 GeneCards: ADA Gene |
EC number |
3.5.4.4 |
Gene ontology |
Molecular function |
• purine nucleoside binding
• adenosine deaminase activity
• protein binding
• zinc ion binding
|
Cellular component |
• extracellular space
• cytoplasm
• lysosome
• cytosol
• plasma membrane
• external side of plasma membrane
• cell surface
• membrane
• cell junction
• dendrite cytoplasm
• neuronal cell body
• cytoplasmic membrane-bounded vesicle lumen
|
Biological process |
• response to hypoxia
• histamine secretion
• trophectodermal cell differentiation
• liver development
• placenta development
• germinal center B cell differentiation
• positive regulation of germinal center formation
• negative regulation of leukocyte migration
• negative regulation of mature B cell apoptotic process
• purine nucleobase metabolic process
• adenosine catabolic process
• deoxyadenosine catabolic process
• aging
• purine ribonucleoside monophosphate biosynthetic process
• positive regulation of heart rate
• positive regulation of B cell proliferation
• purine nucleotide salvage
• positive regulation of T cell differentiation in thymus
• response to vitamin E
• regulation of cell-cell adhesion mediated by integrin
• T cell activation
• negative regulation of circadian sleep/wake cycle, non-REM sleep
• response to drug
• response to hydrogen peroxide
• purine-containing compound salvage
• hypoxanthine salvage
• response to morphine
• small molecule metabolic process
• positive regulation of smooth muscle contraction
• dATP catabolic process
• inosine biosynthetic process
• xanthine biosynthetic process
• positive regulation of alpha-beta T cell differentiation
• lung alveolus development
• Peyer's patch development
• embryonic digestive tract development
• negative regulation of inflammatory response
• positive regulation of calcium-mediated signaling
• positive regulation of T cell receptor signaling pathway
• nucleobase-containing small molecule metabolic process
• negative regulation of adenosine receptor signaling pathway
• negative regulation of penile erection
• negative regulation of thymocyte apoptotic process
• negative regulation of mucus secretion
|
Sources: Amigo / QuickGO |
|
RNA expression pattern |
|
|
More reference expression data |
Orthologs |
Species |
Human |
Mouse |
Entrez |
100 |
11486 |
Ensembl |
ENSG00000196839 |
ENSMUSG00000017697 |
UniProt |
P00813 |
P03958 |
RefSeq (mRNA) |
NM_000022 |
NM_001272052 |
RefSeq (protein) |
NP_000013 |
NP_001258981 |
Location (UCSC) |
Chr 20:
44.62 – 44.65 Mb |
Chr 2:
163.73 – 163.75 Mb |
PubMed search |
[1] |
[2] |
|
Adenosine/AMP deaminase |
crystal structure of plasmodium yoelii adenosine deaminase (py02076)
|
Identifiers |
Symbol |
A_deaminase |
Pfam |
PF00962 |
Pfam clan |
CL0034 |
InterPro |
IPR001365 |
PROSITE |
PDOC00419 |
SCOP |
1add |
SUPERFAMILY |
1add |
Available protein structures: |
Pfam |
structures |
PDB |
RCSB PDB; PDBe; PDBj |
PDBsum |
structure summary |
|
Adenosine deaminase (editase) domain |
Identifiers |
Symbol |
A_deamin |
Pfam |
PF02137 |
InterPro |
IPR002466 |
PROSITE |
PDOC00419 |
SCOP |
1add |
SUPERFAMILY |
1add |
Available protein structures: |
Pfam |
structures |
PDB |
RCSB PDB; PDBe; PDBj |
PDBsum |
structure summary |
|
Adenosine/AMP deaminase N-terminal |
Identifiers |
Symbol |
A_deaminase_N |
Pfam |
PF08451 |
InterPro |
IPR013659 |
Available protein structures: |
Pfam |
structures |
PDB |
RCSB PDB; PDBe; PDBj |
PDBsum |
structure summary |
|
Adenosine deaminase (also known as adenosine aminohydrolase, or ADA) is an enzyme (EC 3.5.4.4) involved in purine metabolism. It is needed for the breakdown of adenosine from food and for the turnover of nucleic acids in tissues.
Its primary function in humans is the development and maintenance of the immune system.[1] However, the full physiological role of ADA is not yet completely understood.[2]
Contents
- 1 Structure
- 2 Reactions
- 3 Mechanism of catalysis
- 4 Function
- 5 Pathology
- 6 Isoforms
- 7 Clinical significance
- 8 See also
- 9 References
- 10 Further reading
- 11 External links
Structure
ADA exists in both small form (as a monomer) and large form (as a dimer-complex).[2] In the monomer form, the enzyme is a polypeptide chain,[3] folded into eight strands of parallel α/β barrels, which surround a central deep pocket that is the active site.[1] In addition to the eight central β-barrels and eight peripheral α-helices, ADA also contains five additional helices: residues 19-76 fold into three helices, located between β1 and α1 folds; and two antiparallel carboxy-terminal helices are located across the amino-terminal of the β-barrel.
The ADA active site contains a zinc ion, which is located in the deepest recess of the active site and coordinated by five atoms from His15, His17, His214, Asp295, and the substrate.[1] Zinc is the only cofactor necessary for activity.
The substrate, adenosine, is stabilized and bound to the active site by nine hydrogen bonds.[1] The carboxyl group of Glu217, roughly coplanar with the substrate purine ring, is in position to form a hydrogen bond with N1 of the substrate. The carboxyl group of Asp296, also coplanar with the substrate purine ring, forms hydrogen bond with N7 of the substrate. The NH group of Gly184 is in position to form a hydrogen bond with N3 of the substrate. Asp296 forms bonds both with the Zn2+ ion as well as with 6-OH of the substrate. His238 also hydrogen bonds to substrate 6-OH. The 3'-OH of the substrate ribose forms a hydrogen bond with Asp19, while the 5'-OH forms a hydrogen bond with His17. Two further hydrogen bonds are formed to water molecules, at the opening of the active site, by the 2'-OH and 3'-OH of the substrate.
Due to the recessing of the active site inside the enzyme, the substrate, once bound, is almost completely sequestered from solvent.[1] The surface exposure of the substrate to solvent when bound is 0.5% the surface exposure of the substrate in the free state.
Reactions
ADA irreversibly deaminates adenosine, converting it to the related nucleoside inosine by the substitution of the amino group for a hydroxyl group.
Inosine can then be deribosylated (removed from ribose) by another enzyme called purine nucleoside phosphorylase (PNP), converting it to hypoxanthine.
Mechanism of catalysis
Two proposed mechanisms exist for ADA-catalyzed deamination: 1) stereospecific addition-elimination via tetrahedral intermediate or 2) an SN2 reaction.[2][4] By either mechanism, Zn2+ as a strong electrophile activates a water molecule, which is deprotonated by the basic Asp295 to form the attacking hydroxide.[1] His238 orients the water molecule and stabilizes the charge of the attacking hydroxide. Glu217 is protonated to donate a proton to N1 of the substrate.
The reaction is stereospecific due to the location of the zinc, Asp295, and His238 residues, which all face the B-side of the purine ring of the substrate.[1]
Competitive inhibition has been observed for ADA, where the product inosine acts at the competitive inhibitor to enzymatic activity.[5]
Function
ADA is considered one of the key enzymes of purine metabolism.[4] The enzyme has been found in bacteria, plants, invertebrates, vertebrates, and mammals, with high conservation of amino acid sequence.[2] The high degree of amino acid sequence conservation suggests the crucial nature of ADA in the purine salvage pathway.
Primarily, ADA in humans is involved in the development and maintenance of the immune system. However, ADA association has also been observed with epithelial cell differentiation, neurotransmission, and gestation maintenance.[6] It has also been proposed that ADA, in addition to adenosine breakdown, stimulates release of excitatory amino acids and is necessary to the coupling of A1 adenosine receptors and heterotrimeric G proteins.[2] Adenosine deaminase deficiency leads to pulmonary fibrosis,[7] suggesting that chronic exposure to high levels of adenosine can exacerbate inflammation responses rather than suppressing them. It has also been recognized that adenosine deaminase protein and activity is upregulated in mouse hearts that overexpress HIF-1 alpha, which in part explains the attenuated levels of adenosine in HIF-1 alpha expressing hearts during ischemic stress.[8]
Pathology
Some mutations in the gene for adenosine deaminase cause it not to be expressed. The resulting deficiency is one cause of severe combined immunodeficiency (SCID).[9] Deficient levels of ADA have also been associated with pulmonary inflammation, thymic cell death, and defective T-cell receptor signaling.[10][11]
Conversely, mutations causing this enzyme to be overexpressed are one cause of hemolytic anemia .[12]
There is some evidence that a different allele (ADA2) may lead to autism.[13]
Elevated levels of ADA has also been associated with AIDS.[10][14]
Isoforms
There are 2 isoforms of ADA: ADA1 and ADA2.
- ADA1 is found in most body cells, particularly lymphocytes and macrophages, where it is present not only in the cytosol and nucleus but also as the ecto- form on the cell membrane attached to dipeptidyl peptidase-4 (aka, CD26). ADA1 is involved mostly in intracellular activity, and exists both in small form (monomer) and large form (dimer).[2] The interconversion of small to large forms is regulated by a 'conversion factor' in the lung.[15]
- ADA2 was first identified in human spleen.[16] It was subsequently found in other tissues including the macrophage where it co-exists with ADA1. The two isoforms regulate the ratio of adenosine to deoxyadenosine potentiating the killing of parasites. ADA2 is found predominantly in the human plasma and serum, and exists solely as a homodimer.[17]
Clinical significance
ADA2 is the predominant form present in human blood plasma and is increased in many diseases, particularly those associated with the immune system: for example rheumatoid arthritis, psoriasis, and sarcoidosis. The plasma ADA2 isoform is also increased in most cancers. ADA2 is not ubiquitous but co-exists with ADA1 only in monocytes-macrophages.[citation needed]
Total plasma ADA can be measured using high performance liquid chromatography or enzymatic or colorimetric techniques. Perhaps the simplest system is the measurement of the ammonia released from adenosine when broken down to inosine. After incubation of plasma with a buffered solution of adenosine the ammonia is reacted with a Berthelot reagent to form a blue colour which is proportionate to the amount of enzyme activity. To measure ADA2, erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA) is added prior to incubation so as to inhibit the enzymatic activity of ADA1.[16] It is the absence of ADA1 that causes SCID.
ADA can also be used in the workup of lymphocytic pleural effusions or peritoneal ascites, in that such specimens with low ADA levels essentially excludes tuberculosis from consideration.[18]
Tuberculosis pleural effusions can now be diagnosed accurately by increased levels of pleural fluid adenosine deaminase, above 40 U per liter.[19]
Cladribine is an anti-neoplastic agent used in the treatment of hairy cell leukemia; its mechanism of action is inhibition of adenosine deaminase.
See also
- Adenosine deaminase deficiency
References
- ^ a b c d e f g Wilson DK, Rudolph FB, Quiocho FA (May 1991). "Atomic structure of adenosine deaminase complexed with a transition-state analog: understanding catalysis and immunodeficiency mutations". Science 252 (5010): 1278–1284. doi:10.1126/science.1925539. PMID 1925539.
- ^ a b c d e f Cristalli G, Costanzi S, Lambertucci C, Lupidi G, Vittori S, Volpini R, Camaioni E (Mar 2001). "Adenosine deaminase: functional implications and different classes of inhibitors". Medicinal Research Reviews 21 (2): 105–128. doi:10.1002/1098-1128(200103)21:2<105::AID-MED1002>3.0.CO;2-U. PMID 11223861.
- ^ Daddona PE, Kelley WN (Jan 1977). "Human adenosine deaminase. Purification and subunit structure". The Journal of Biological Chemistry 252 (1): 110–115. PMID 13062.
- ^ a b Glader BE, Backer K, Diamond LK (Dec 1983). "Elevated erythrocyte adenosine deaminase activity in congenital hypoplastic anemia". The New England Journal of Medicine 309 (24): 1486–1490. doi:10.1056/NEJM198312153092404. PMID 6646173.
- ^ Saboury AA, Divsalar A, Jafari GA, Moosavi-Movahedi AA, Housaindokht MR, Hakimelahi GH (May 2002). "A product inhibition study on adenosine deaminase by spectroscopy and calorimetry". Journal of Biochemistry and Molecular Biology 35 (3): 302–305. doi:10.5483/BMBRep.2002.35.3.302. PMID 12297022.
- ^ Moriwaki Y, Yamamoto T, Higashino K (Oct 1999). "Enzymes involved in purine metabolism--a review of histochemical localization and functional implications". Histology and Histopathology 14 (4): 1321–1340. PMID 10506947.
- ^ Blackburn MR (2003). "Too much of a good thing: adenosine overload in adenosine-deaminase-deficient mice". Trends in Pharmacological Sciences 24 (2): 66–70. doi:10.1016/S0165-6147(02)00045-7. PMID 12559769.
- ^ Wu J, Bond C, Chen P, Chen M, Li Y, Shohet RV, Wright G (2015). "HIF-1α in the heart: remodeling nucleotide metabolism". Journal of Molecular and Cellular Cardiology 82: 194–200. doi:10.1016/j.yjmcc.2015.01.014. PMID 25681585.
- ^ Sanchez JJ, Monaghan G, Børsting C, Norbury G, Morling N, Gaspar HB (May 2007). "Carrier frequency of a nonsense mutation in the adenosine deaminase (ADA) gene implies a high incidence of ADA-deficient severe combined immunodeficiency (SCID) in Somalia and a single, common haplotype indicates common ancestry". Annals of Human Genetics 71 (Pt 3): 336–47. doi:10.1111/j.1469-1809.2006.00338.x. PMID 17181544.
- ^ a b Blackburn MR, Kellems RE (2005). "Adenosine deaminase deficiency: metabolic basis of immune deficiency and pulmonary inflammation". Advances in Immunology. Advances in Immunology 86: 1–41. doi:10.1016/S0065-2776(04)86001-2. ISBN 9780120044863. PMID 15705418.
- ^ Apasov SG, Blackburn MR, Kellems RE, Smith PT, Sitkovsky MV (Jul 2001). "Adenosine deaminase deficiency increases thymic apoptosis and causes defective T cell receptor signaling". The Journal of Clinical Investigation 108 (1): 131–141. doi:10.1172/JCI10360. PMC 209335. PMID 11435465.
- ^ Chottiner EG, Cloft HJ, Tartaglia AP, Mitchell BS (Mar 1987). "Elevated adenosine deaminase activity and hereditary hemolytic anemia. Evidence for abnormal translational control of protein synthesis". The Journal of Clinical Investigation 79 (3): 1001–5. doi:10.1172/JCI112866. PMC 424261. PMID 3029177.
- ^ Persico AM, Militerni R, Bravaccio C, Schneider C, Melmed R, Trillo S, Montecchi F, Palermo MT, Pascucci T, Puglisi-Allegra S, Reichelt KL, Conciatori M, Baldi A, Keller F (Dec 2000). "Adenosine deaminase alleles and autistic disorder: case-control and family-based association studies". American Journal of Medical Genetics 96 (6): 784–90. doi:10.1002/1096-8628(20001204)96:6<784::AID-AJMG18>3.0.CO;2-7. PMID 11121182.
- ^ Cowan MJ, Brady RO, Widder KJ (Feb 1986). "Elevated erythrocyte adenosine deaminase activity in patients with acquired immunodeficiency syndrome". Proceedings of the National Academy of Sciences of the United States of America 83 (4): 1089–1091. doi:10.1073/pnas.83.4.1089. PMC 323016. PMID 3006027.
- ^ Schrader WP, Stacy AR (Sep 1977). "Purification and subunit structure of adenosine deaminase from human kidney". The Journal of Biological Chemistry 252 (18): 6409–6415. PMID 893413.
- ^ a b Schrader WP, Pollara B, Meuwissen HJ (Jan 1978). "Characterization of the residual adenosine deaminating activity in the spleen of a patient with combined immunodeficiency disease and adenosine deaminase deficiency". Proceedings of the National Academy of Sciences of the United States of America 75 (1): 446–50. doi:10.1073/pnas.75.1.446. PMC 411266. PMID 24216.
- ^ Zavialov AV, Engström A (Oct 2005). "Human ADA2 belongs to a new family of growth factors with adenosine deaminase activity". The Biochemical Journal 391 (Pt 1): 51–57. doi:10.1042/BJ20050683. PMC 1237138. PMID 15926889.
- ^ Jiménez Castro D, Díaz Nuevo G, Pérez-Rodríguez E, Light RW (2003). "Diagnostic value of adenosine deaminase in nontuberculous lymphocytic pleural effusions" (PDF). Eur. Respir. J. 21 (2): 220–4. doi:10.1183/09031936.03.00051603. PMID 12608433.
- ^ Brunicardi F, Andersen D, Billiar T, Dunn D, Hunter J, Pollock RE (2005). "Chapter 18, question 16". Schwartz's principles of surgery (8th ed.). New York: McGraw-Hill Professional. ISBN 978-0071410908.
Further reading
- da Cunha JG (1992). "[Adenosine deaminase. A pluridisciplinary enzyme]". Acta Médica Portuguesa 4 (6): 315–23. PMID 1807098.
- Franco R, Casadó V, Ciruela F, Saura C, Mallol J, Canela EI, Lluis C (Jul 1997). "Cell surface adenosine deaminase: much more than an ectoenzyme". Progress in Neurobiology 52 (4): 283–94. doi:10.1016/S0301-0082(97)00013-0. PMID 9247966.
- Valenzuela A, Blanco J, Callebaut C, Jacotot E, Lluis C, Hovanessian AG, Franco R (1997). "HIV-1 envelope gp120 and viral particles block adenosine deaminase binding to human CD26". Advances in Experimental Medicine and Biology 421: 185–92. doi:10.1007/978-1-4757-9613-1_24. PMID 9330696.
- Moriwaki Y, Yamamoto T, Higashino K (Oct 1999). "Enzymes involved in purine metabolism--a review of histochemical localization and functional implications". Histology and Histopathology 14 (4): 1321–40. PMID 10506947.
- Hirschhorn R (1993). "Identification of two new missense mutations (R156C and S291L) in two ADA- SCID patients unusual for response to therapy with partial exchange transfusions". Human Mutation 1 (2): 166–8. doi:10.1002/humu.1380010214. PMID 1284479.
- Berkvens TM, van Ormondt H, Gerritsen EJ, Khan PM, van der Eb AJ (Aug 1990). "Identical 3250-bp deletion between two AluI repeats in the ADA genes of unrelated ADA-SCID patients". Genomics 7 (4): 486–90. doi:10.1016/0888-7543(90)90190-6. PMID 1696926.
- Aran JM, Colomer D, Matutes E, Vives-Corrons JL, Franco R (Aug 1991). "Presence of adenosine deaminase on the surface of mononuclear blood cells: immunochemical localization using light and electron microscopy". The Journal of Histochemistry and Cytochemistry 39 (8): 1001–8. doi:10.1177/39.8.1856451. PMID 1856451.
- Bielat K, Tritsch GL (Apr 1989). "Ecto-enzyme activity of human erythrocyte adenosine deaminase". Molecular and Cellular Biochemistry 86 (2): 135–42. doi:10.1007/BF00222613. PMID 2770711.
- Hirschhorn R, Tzall S, Ellenbogen A, Orkin SH (Feb 1989). "Identification of a point mutation resulting in a heat-labile adenosine deaminase (ADA) in two unrelated children with partial ADA deficiency". The Journal of Clinical Investigation 83 (2): 497–501. doi:10.1172/JCI113909. PMC 303706. PMID 2783588.
- Murray JL, Perez-Soler R, Bywaters D, Hersh EM (Jan 1986). "Decreased adenosine deaminase (ADA) and 5'nucleotidase (5NT) activity in peripheral blood T cells in Hodgkin disease". American Journal of Hematology 21 (1): 57–66. doi:10.1002/ajh.2830210108. PMID 3010705.
- Wiginton DA, Kaplan DJ, States JC, Akeson AL, Perme CM, Bilyk IJ, Vaughn AJ, Lattier DL, Hutton JJ (Dec 1986). "Complete sequence and structure of the gene for human adenosine deaminase". Biochemistry 25 (25): 8234–44. doi:10.1021/bi00373a017. PMID 3028473.
- Akeson AL, Wiginton DA, Dusing MR, States JC, Hutton JJ (Nov 1988). "Mutant human adenosine deaminase alleles and their expression by transfection into fibroblasts". The Journal of Biological Chemistry 263 (31): 16291–6. PMID 3182793.
- Glader BE, Backer K (Feb 1988). "Elevated red cell adenosine deaminase activity: a marker of disordered erythropoiesis in Diamond-Blackfan anaemia and other haematologic diseases". British Journal of Haematology 68 (2): 165–8. doi:10.1111/j.1365-2141.1988.tb06184.x. PMID 3348976.
- Petersen MB, Tranebjaerg L, Tommerup N, Nygaard P, Edwards H (Feb 1987). "New assignment of the adenosine deaminase gene locus to chromosome 20q13 X 11 by study of a patient with interstitial deletion 20q". Journal of Medical Genetics 24 (2): 93–6. doi:10.1136/jmg.24.2.93. PMC 1049896. PMID 3560174.
- Orkin SH, Goff SC, Kelley WN, Daddona PE (Apr 1985). "Transient expression of human adenosine deaminase cDNAs: identification of a nonfunctional clone resulting from a single amino acid substitution". Molecular and Cellular Biology 5 (4): 762–7. PMC 366780. PMID 3838797.
- Valerio D, Duyvesteyn MG, Dekker BM, Weeda G, Berkvens TM, van der Voorn L, van Ormondt H, van der Eb AJ (Feb 1985). "Adenosine deaminase: characterization and expression of a gene with a remarkable promoter". The EMBO Journal 4 (2): 437–43. PMC 554205. PMID 3839456.
- Bonthron DT, Markham AF, Ginsburg D, Orkin SH (Aug 1985). "Identification of a point mutation in the adenosine deaminase gene responsible for immunodeficiency". The Journal of Clinical Investigation 76 (2): 894–7. doi:10.1172/JCI112050. PMC 423929. PMID 3839802.
- Daddona PE, Shewach DS, Kelley WN, Argos P, Markham AF, Orkin SH (Oct 1984). "Human adenosine deaminase. cDNA and complete primary amino acid sequence". The Journal of Biological Chemistry 259 (19): 12101–6. PMID 6090454.
- Valerio D, Duyvesteyn MG, Meera Khan P, Geurts van Kessel A, de Waard A, van der Eb AJ (Nov 1983). "Isolation of cDNA clones for human adenosine deaminase". Gene 25 (2-3): 231–40. doi:10.1016/0378-1119(83)90227-5. PMID 6198240.
External links
- ADA human gene location in the UCSC Genome Browser.
- ADA human gene details in the UCSC Genome Browser.
PDB gallery
|
|
|
1krm: Crystal structure of bovine adenosine deaminase complexed with 6-hydroxyl-1,6-dihydropurine riboside
|
|
1ndv: Crystal Structure of Adenosine Deaminase complexed with FR117016
|
|
1ndw: Crystal Structure of Adenosine Deaminase Complexed with FR221647
|
|
1ndy: Crystal Structure of Adenosine Deaminase Complexed with FR230513
|
|
1ndz: Crystal Structure of Adenosine Deaminase Complexed with FR235999
|
|
1o5r: Crystal structure of adenosine deaminase complexed with a potent inhibitor
|
|
1qxl: Crystal structure of Adenosine deaminase complexed with FR235380
|
|
1uml: Crystal structure of adenosine deaminase complexed with a potent inhibitor FR233624
|
|
1v79: Crystal structures of adenosine deaminase complexed with potent inhibitors
|
|
1v7a: Crystal structures of adenosine deaminase complexed with potent inhibitors
|
|
1vfl: Adenosine deaminase
|
|
1w1i: CRYSTAL STRUCTURE OF DIPEPTIDYL PEPTIDASE IV (DPPIV OR CD26) IN COMPLEX WITH ADENOSINE DEAMINASE
|
|
1wxy: Crystal structure of adenosine deaminase ligated with a potent inhibitor
|
|
1wxz: Crystal structure of adenosine deaminase ligated with a potent inhibitor
|
|
2bgn: HIV-1 TAT PROTEIN DERIVED N-TERMINAL NONAPEPTIDE TRP2-TAT (1-9) BOUND TO THE ACTIVE SITE OF DIPEPTIDYL PEPTIDASE IV (CD26)
|
|
2e1w: Crystal structure of adenosine deaminase complexed with potent inhibitors
|
|
|
|
- Metabolism: amino acid metabolism
- nucleotide enzymes
|
|
Purine metabolism |
Anabolism |
R5P→IMP: |
- Ribose-phosphate diphosphokinase
- Amidophosphoribosyltransferase
- Phosphoribosylglycinamide formyltransferase
- AIR synthetase (FGAM cyclase)
- Phosphoribosylaminoimidazole carboxylase
- Phosphoribosylaminoimidazolesuccinocarboxamide synthase
- IMP synthase
|
|
IMP→AMP: |
- Adenylosuccinate synthase
- Adenylosuccinate lyase
- reverse
|
|
IMP→GMP: |
- IMP dehydrogenase
- GMP synthase
- reverse
|
|
|
Nucleotide salvage |
- Hypoxanthine-guanine phosphoribosyltransferase
- Adenine phosphoribosyltransferase
|
|
Catabolism |
- Adenosine deaminase
- Purine nucleoside phosphorylase
- Guanine deaminase
- Xanthine oxidase
- Urate oxidase
|
|
|
Pyrimidine metabolism |
Anabolism |
- CAD
- Carbamoyl phosphate synthase II
- Aspartate carbamoyltransferase
- Dihydroorotase
|
|
- Dihydroorotate dehydrogenase
- Orotidine 5'-phosphate decarboxylase/Uridine monophosphate synthetase
|
|
|
|
|
Catabolism |
- Dihydropyrimidine dehydrogenase
- Dihydropyrimidinase/DPYS
- Beta-ureidopropionase/UPB1
|
|
|
Deoxyribonucleotides |
- Ribonucleotide reductase
- Nucleoside-diphosphate kinase
- DCMP deaminase
- Thymidylate synthase
- Dihydrofolate reductase
|
|
Index of inborn errors of metabolism
|
|
Description |
- Metabolism
- Enzymes and pathways: citric acid cycle
- pentose phosphate
- glycoproteins
- glycosaminoglycans
- phospholipid
- cholesterol and steroid
- sphingolipids
- eicosanoids
- amino acid
- urea cycle
- nucleotide
|
|
Disorders |
- Citric acid cycle and electron transport chain
- Glycoprotein
- Proteoglycan
- Fatty-acid
- Phospholipid
- Cholesterol and steroid
- Eicosanoid
- Amino acid
- Purine-pyrimidine
- Heme metabolism
- Symptoms and signs
|
|
Treatment |
|
|
|
Hydrolases: carbon-nitrogen non-peptide (EC 3.5)
|
|
3.5.1: Linear amides /
Amidohydrolases |
- Asparaginase
- Glutaminase
- Urease
- Biotinidase
- Aspartoacylase
- Ceramidase
- Aspartylglucosaminidase
- Fatty acid amide hydrolase
- Histone deacetylase
|
|
3.5.2: Cyclic amides/
Amidohydrolases |
- Barbiturase
- Beta-lactamase
|
|
3.5.3: Linear amidines/
Ureohydrolases |
- Arginase
- Agmatinase
- Protein-arginine deiminase
|
|
3.5.4: Cyclic amidines/
Aminohydrolases |
- Guanine deaminase
- Adenosine deaminase
- AMP deaminase
- Inosine monophosphate synthase
- DCMP deaminase
- GTP cyclohydrolase I
- Cytidine deaminase
- AICDA
- Activation-induced cytidine deaminase
|
|
3.5.5: Nitriles/
Aminohydrolases |
|
|
3.5.99: Other |
- Riboflavinase
- Thiaminase II
|
|
- Biochemistry overview
- Enzymes overview
- By EC number: 1.1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15-99
- 2.1
- 3.1
- 4.1
- 5.1
- 6.1-3
|
|
|
|
Proteins: enzymes
|
|
Activity |
- Active site
- Binding site
- Catalytic triad
- Oxyanion hole
- Enzyme promiscuity
- Catalytically perfect enzyme
- Coenzyme
- Cofactor
- Enzyme catalysis
- Enzyme kinetics
- Lineweaver–Burk plot
- Michaelis–Menten kinetics
|
|
Regulation |
- Allosteric regulation
- Cooperativity
- Enzyme inhibitor
|
|
Classification |
- EC number
- Enzyme superfamily
- Enzyme family
- List of enzymes
|
|
Types |
- EC1 Oxidoreductases(list)
- EC2 Transferases(list)
- EC3 Hydrolases(list)
- EC4 Lyases(list)
- EC5 Isomerases(list)
- EC6 Ligases(list)
|
|
- Biochemistry overview
- Enzymes overview
- By EC number: 1.1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15-99
- 2.1
- 3.1
- 4.1
- 5.1
- 6.1-3
|
|
|
|