出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2017/04/16 22:08:55」(JST)
Names | |
---|---|
IUPAC name
2,3-dihydroxy-5-({[(2R,3R,4S,5R,6R)-3,4,5,6-tetrakis({3,4-dihydroxy-5-[(3,4,5-trihydroxyphenyl)carbonyloxy]phenyl}carbonyloxy)oxan-2-yl]methoxy}carbonyl)phenyl 3,4,5-trihydroxybenzoate
|
|
Other names
Acidum tannicum
Gallotannic acid |
|
Identifiers | |
CAS Number
|
|
3D model (Jmol)
|
|
Beilstein Reference
|
8186386 |
ChEBI |
|
ChemSpider |
|
ECHA InfoCard | 100.014.321 |
IUPHAR/BPS
|
|
KEGG |
|
PubChem CID
|
|
UNII |
|
InChI
|
|
SMILES
|
|
Properties | |
Chemical formula
|
C76H52O46 |
Molar mass | 1701.19 g/mol |
Melting point | decomposes above 200 °C |
Solubility in water
|
2850 g/L |
Acidity (pKa) | ca. 10 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
N verify (what is YN ?) | |
Infobox references | |
Tannic acid is a specific form of tannin, a type of polyphenol. Its weak acidity (pKa around 10) is due to the numerous phenol groups in the structure. The chemical formula for commercial tannic acid is often given as C76H52O46, which corresponds with decagalloyl glucose, but in fact it is a mixture of polygalloyl glucoses or polygalloyl quinic acid esters with the number of galloyl moieties per molecule ranging from 2 up to 12 depending on the plant source used to extract the tannic acid. Commercial tannic acid is usually extracted from any of the following plant part: Tara pods (Caesalpinia spinosa), gallnuts from Rhus semialata or Quercus infectoria or Sicilian Sumac leaves (Rhus coriaria).
According to the definitions provided in external references such as international pharmacopoeia, Food Chemicals Codex and FAO-WHO tannic acid monograph only tannins sourced from the above-mentioned plants can be considered as tannic acid. Sometimes extracts from chestnut or oak wood are also described as tannic acid but this is an incorrect use of the term. It is a yellow to light brown amorphous powder; 2850 grams dissolves in one litre of water (1.7 moles per liter).
While tannic acid is a specific type of tannin (plant polyphenol), the two terms are sometimes (incorrectly) used interchangeably. The long-standing misuse of the terms, and its inclusion in scholarly articles has compounded the confusion. This is particularly widespread in relation to green tea and black tea, both of which contain tannin but not tannic acid.[1]
Tannic acid is not an appropriate standard for any type of tannin analysis because of its poorly defined composition.
Quercitannic acid is one of the two forms of tannic acid[2] found in oak bark and leaves.[3] The other form is called gallotannic acid and is found in oak galls.
The quercitannic acid molecule is also present in quercitron, a yellow dye obtained from the bark of the Eastern black oak (Quercus velutina), a forest tree indigenous in North America. It is described as a yellowish brown amorphous substance.
In 1838, Jöns Jacob Berzelius wrote that quercitannate is used to dissolve morphine.[4]
In 1865 in the fifth volume of "A dictionary of chemistry", Henry Watts wrote :
It exhibits with ferric salts the same reactions as gallotannic acid. It differs however from the latter in not being convertible into gallic acid, and not yielding pyrogallic acid by dry distillation. It is precipitated by sulfuric acid in red flocks. (Stenhouse, Ann. Ch. Pharm. xlv. 16.)
According to Rochleder (ibid lxiii. 202), the tannic acid of black tea is the same as that of oak-bark.[5]
In 1880, Etti gave for it the molecular formula C17H16O9. He described it as an unstable substance, having a tendency to give off water to form anhydrides (called phlobaphenes), one of which is called oak-red (C34H30O17). For him, it was not a glycoside.[6][7]
In Allen’s "Commercial Organic Analysis", published in 1912, the formula given was C19H16O10.[8]
Other authors gave other molecular formulas like C28H26O15, while another formula found is C28H24O11.[9]
According to Lowe, two forms of the principle exist – one soluble in water, of the formula C28H28O14, and the other scarcely soluble, C28H24O12. Both are changed by the loss of water into oak red, C28H22O11.[10]
Quercitannic acid was for a time a standard used to assess the phenolic content in spices, given as quercitannic acid equivalent.[11]
In an interesting historical note, the inventor Edward G. Acheson (Inventor of Carborundum) discovered that gallotannic acid greatly improved the plasticity of clay. In his report of this discovery in 1904 he noted that the only known historical reference to the use of organic material added to clay is the use of straw mixed with clay described in the Bible, Exodus 1:11 and that the Egyptians must have been aware of his (re-)discovery. He stated "This explains why the straw was used and why the children of Israel were successful in substituting stubble for straw, a course that would hardly be possible, were the fibre of the straw depended upon as a bond feasible for the clay, but quite reasonable where the extract of the plant was used."[12]
This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (July 2016) (Learn how and when to remove this template message) |
Tannins are a basic ingredient in the chemical staining of wood, and are already present in woods like oak, walnut, and mahogany. Tannic acid can be applied to woods low in tannin so chemical stains that require tannin content will react. The presence of tannins in the bark of redwood (Sequoia) is a strong natural defense against wildfire, decomposition and infestation by certain insects such as termites. It is found in the seeds, bark, cones, and heartwood.
Tannic acid is a common mordant used in the dyeing process for cellulose fibers such as cotton, often combined with alum and/or iron. The tannin mordant should be done first as metal mordants combine well with the fiber-tannin complex. However this use has lost considerable interest.
Similarly tannic acid can also be used as an aftertreatment to improve wash fastness properties of acid dyed polyamide. It is also an alternative for fluorcarbon aftertreatments to impart anti-staining properties to polyamide yarn or carpets. However, due to economic considerations currently the only widespread use as textile auxiliary is the use as an agent to improve chlorine fastness, i.e. resistance against dye bleaching due to cleaning with hypochlorite solutions in high-end polyamide 6,6-based carpets and swimwear. It is, however, used in relatively small quantities for the activation of upholstery flock; this serves as an anti-static treatment.
Tannic acid is used in the conservation of ferrous (iron based) metal objects to passivate and inhibit corrosion. Tannic acid reacts with the corrosion products to form a more stable compound, thus preventing further corrosion from taking place. After treatment the tannic acid residue is generally left on the object so that if moisture reaches the surface the tannic acid will be rehydrated and prevent or slow any corrosion. Tannic acid treatment for conservation is very effective and widely used but it does have a significant visual effect on the object, turning the corrosion products black and any exposed metal dark blue. It should also be used with care on objects with copper alloy components as the tannic acid can have a slight etching effect on these metals.
Tannic acid is also found in commercially available iron/steel corrosion treatments, such as Hammerite Kurust.
Use of tannic acid in food applications is far more widespread[clarification needed] and significant amounts are used as process aids in beer clarification, aroma compound in soft drinks and juices. Equally important are applications in the wine industry, where it finds use as a natural clarifying agent, colour stabilizer and taste enhancer.
In many parts of the world, such uses are permitted. In the United States, tannic acid is generally recognized as safe by the Food and Drug Administration.
According to EU directive 89/107/EEC tannic acid cannot be considered as a food additive and consequently does not hold an E number. Under directive 89/107/EEC tannic acid can be referred to as a food ingredient. The E-number E181 is sometimes incorrectly used to refer to tannic acid; this in fact refers to the INS number assigned to tannic acid under the FAO-WHO Codex Alimentarius system.
Tannins are a common impurity in the bevarage ayahuasca made from mimosa hostilis root bark. Tannins contribute to the nausea and gastrointestinal upset associated with ayahuasca consumption. Addition of gelatin to ayahuasca binds to these tannins, causing them to sink.
In conjunction with magnesium and sometimes activated charcoal, tannic acid was once used as a treatment for many toxic substances, such as strychnine, mushroom, and ptomaine poisonings in the late 19th and early 20th centuries.[13]
The introduction of tannic acid treatment of severe burn injuries in the 1920s significantly reduced mortality rates.[14] During World War I, tannic acid dressings were prescribed to treat "burns, whether caused by incendiary bombs, mustard gas or lewisite.[15] After the war this use was abandoned due to the development of more modern treatment regimens.
Tannic acid is still used in pharmaceutical applications to produce albumin tannate which is used as an antidiarrheal agent. Tannic acid is also used to produce tannate salts of certain antihistamine and antitussive products to impart increased stability or slow release properties to the active pharmaceutical ingredient. Further to this, tannic acid is the principle but perhaps minimally effective ingredient in antiallergen sprays.[16]
Tannins have also been reported to exert many physiological effects, such as to accelerate blood clotting, reduce blood pressure, decrease the serum lipid level, produce liver necrosis, and modulate immunoresponses.[17] This would explain common folklore such as that soaking feet in tannic acid (or strong tea) can treat or prevent blisters, foot odor and rough, dry feet.[18]
Skin color in Crocodilia (crocodiles and alligators) is very dependent on water quality. Algae-laden waters produce greener skin, while tannic acid in the water from decay of leaves from overhanging trees (which produces some types of blackwater rivers) often produce darker skin in these animals.[citation needed]
The Merck Index, 9th edition, Merck & Co., Rahway, New Jersey, 1976.
Types of gallotannins
|
|||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aglycones |
|
||||||||||||||||||||||
Galloyl glucoses |
|
||||||||||||||||||||||
Galloyl quinic acids |
|
||||||||||||||||||||||
Galloyl shikimic acids |
|
||||||||||||||||||||||
others |
|
リンク元 | 「タンニン酸」 |
.