マルチスライスCT Multi-row Detector CT
出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2013/05/25 21:50:10」(JST)
修正離散コサイン変換(しゅうせいりさんコサインへんかん)または変形離散コサイン変換 (modified discrete cosine transform; MDCT) とは、離散信号を周波数領域へ変換する周波数変換の一種である。 主にMP3やAAC、Vorbisといった音声圧縮などで用いられている。 逆変換は逆修正離散コサイン変換 (IMDCT) である。
MDCTは、窓を半分ずつ重複させながら周波数変換を行う重複直交変換において、変換後のデータ量が増加しないように設計されている。 具体的には、Nの信号からN/2の係数列を出力する(信号は2回ずつ使われる)。 このような重複直交変換はELT(Extended Lapped Transform)で一般化されている。
完全再構成条件として、窓関数はPrincen-Bradley条件を満たす必要がある。 このような窓関数としてはMP3に用いられているsine窓や、Vorbis窓がある。 また、任意の分析用窓関数から条件を満たすMDCT用窓関数を導出する方法もあり、AACではカイザー窓を積和して得られるカイザー・ベッセル派生窓(KBD窓)が用いられている。
高速演算法としては、係数列をDCT-IVに変換する方法と、FFTに変換する方法がある。順変換、逆変換ともにN/2のバッファで実装可能である。
この項目「修正離散コサイン変換」は、工学・技術に関連した書きかけ項目です。加筆、訂正などをして下さる協力者を求めています。 |
|
The modified discrete cosine transform (MDCT) is a Fourier-related transform based on the type-IV discrete cosine transform (DCT-IV), with the additional property of being lapped: it is designed to be performed on consecutive blocks of a larger dataset, where subsequent blocks are overlapped so that the last half of one block coincides with the first half of the next block. This overlapping, in addition to the energy-compaction qualities of the DCT, makes the MDCT especially attractive for signal compression applications, since it helps to avoid artifacts stemming from the block boundaries. As a result of these advantages, the MDCT is employed in most modern lossy audio formats, including MP3, AC-3, Vorbis, Windows Media Audio, ATRAC, Cook, and AAC.
The MDCT was proposed by Princen, Johnson, and Bradley in 1987, following earlier (1986) work by Princen and Bradley to develop the MDCT's underlying principle of time-domain aliasing cancellation (TDAC), described below. (There also exists an analogous transform, the MDST, based on the discrete sine transform, as well as other, rarely used, forms of the MDCT based on different types of DCT or DCT/DST combinations.)
In MP3, the MDCT is not applied to the audio signal directly, but rather to the output of a 32-band polyphase quadrature filter (PQF) bank. The output of this MDCT is postprocessed by an alias reduction formula to reduce the typical aliasing of the PQF filter bank. Such a combination of a filter bank with an MDCT is called a hybrid filter bank or a subband MDCT. AAC, on the other hand, normally uses a pure MDCT; only the (rarely used) MPEG-4 AAC-SSR variant (by Sony) uses a four-band PQF bank followed by an MDCT. Similar to MP3, ATRAC uses stacked quadrature mirror filters (QMF) followed by an MDCT.
Contents
|
As a lapped transform, the MDCT is a bit unusual compared to other Fourier-related transforms in that it has half as many outputs as inputs (instead of the same number). In particular, it is a linear function (where R denotes the set of real numbers). The 2N real numbers x0, ..., x2N-1 are transformed into the N real numbers X0, ..., XN-1 according to the formula:
(The normalization coefficient in front of this transform, here unity, is an arbitrary convention and differs between treatments. Only the product of the normalizations of the MDCT and the IMDCT, below, is constrained.)
The inverse MDCT is known as the IMDCT. Because there are different numbers of inputs and outputs, at first glance it might seem that the MDCT should not be invertible. However, perfect invertibility is achieved by adding the overlapped IMDCTs of subsequent overlapping blocks, causing the errors to cancel and the original data to be retrieved; this technique is known as time-domain aliasing cancellation (TDAC).
The IMDCT transforms N real numbers X0, ..., XN-1 into 2N real numbers y0, ..., y2N-1 according to the formula:
(Like for the DCT-IV, an orthogonal transform, the inverse has the same form as the forward transform.)
In the case of a windowed MDCT with the usual window normalization (see below), the normalization coefficient in front of the IMDCT should be multiplied by 2 (i.e., becoming 2/N).
Although the direct application of the MDCT formula would require O(N2) operations, it is possible to compute the same thing with only O(N log N) complexity by recursively factorizing the computation, as in the fast Fourier transform (FFT). One can also compute MDCTs via other transforms, typically a DFT (FFT) or a DCT, combined with O(N) pre- and post-processing steps. Also, as described below, any algorithm for the DCT-IV immediately provides a method to compute the MDCT and IMDCT of even size.
In typical signal-compression applications, the transform properties are further improved by using a window function wn (n = 0, ..., 2N-1) that is multiplied with xn and yn in the MDCT and IMDCT formulas, above, in order to avoid discontinuities at the n = 0 and 2N boundaries by making the function go smoothly to zero at those points. (That is, we window the data before the MDCT and after the IMDCT.) In principle, x and y could have different window functions, and the window function could also change from one block to the next (especially for the case where data blocks of different sizes are combined), but for simplicity we consider the common case of identical window functions for equal-sized blocks.
The transform remains invertible (that is, TDAC works), for a symmetric window wn = w2N-1-n, as long as w satisfies the Princen-Bradley condition:
various window functions are common, e.g.
for MP3 and MPEG-2 AAC, and
for Vorbis. AC-3 uses a Kaiser-Bessel derived (KBD) window, and MPEG-4 AAC can also use a KBD window.
Note that windows applied to the MDCT are different from windows used for other types of signal analysis, since they must fulfill the Princen-Bradley condition. One of the reasons for this difference is that MDCT windows are applied twice, for both the MDCT (analysis) and the IMDCT (synthesis).
As can be seen by inspection of the definitions, for even N the MDCT is essentially equivalent to a DCT-IV, where the input is shifted by N/2 and two N-blocks of data are transformed at once. By examining this equivalence more carefully, important properties like TDAC can be easily derived.
In order to define the precise relationship to the DCT-IV, one must realize that the DCT-IV corresponds to alternating even/odd boundary conditions: even at its left boundary (around n=–1/2), odd at its right boundary (around n=N–1/2), and so on (instead of periodic boundaries as for a DFT). This follows from the identities and . Thus, if its inputs are an array x of length N, we can imagine extending this array to (x, –xR, –x, xR, ...) and so on, where xR denotes x in reverse order.
Consider an MDCT with 2N inputs and N outputs, where we divide the inputs into four blocks (a, b, c, d) each of size N/2. If we shift these by N/2 (from the +N/2 term in the MDCT definition), then (b, c, d) extend past the end of the N DCT-IV inputs, so we must "fold" them back according to the boundary conditions described above.
(In this way, any algorithm to compute the DCT-IV can be trivially applied to the MDCT.)
Similarly, the IMDCT formula above is precisely 1/2 of the DCT-IV (which is its own inverse), where the output is shifted by N/2 and extended (via the boundary conditions) to a length 2N. The inverse DCT-IV would simply give back the inputs (–cR–d, a–bR) from above. When this is shifted and extended via the boundary conditions, one obtains:
Half of the IMDCT outputs are thus redundant, as b–aR = –(a–bR)R, and likewise for the last two terms.
One can now understand how TDAC works. Suppose that one computes the MDCT of the subsequent, 50% overlapped, 2N block (c, d, e, f). The IMDCT will then yield, analogous to the above: (c–dR, d–cR, e+fR, eR+f) / 2. When this is added with the previous IMDCT result in the overlapping half, the reversed terms cancel and one obtains simply (c, d), recovering the original data.
The origin of the term "time-domain aliasing cancellation" is now clear. The use of input data that extend beyond the boundaries of the logical DCT-IV causes the data to be aliased in exactly the same way that frequencies beyond the Nyquist frequency are aliased to lower frequencies, except that this aliasing occurs in the time domain instead of the frequency domain. Hence the combinations c–dR and so on, which have precisely the right signs for the combinations to cancel when they are added.
For odd N (which are rarely used in practice), N/2 is not an integer so the MDCT is not simply a shift permutation of a DCT-IV. In this case, the additional shift by half a sample means that the MDCT/IMDCT becomes equivalent to the DCT-III/II, and the analysis is analogous to the above.
Above, the TDAC property was proved for the ordinary MDCT, showing that adding IMDCTs of subsequent blocks in their overlapping half recovers the original data. The derivation of this inverse property for the windowed MDCT is only slightly more complicated.
Recall from above that when and are MDCTed, IMDCTed, and added in their overlapping half, we obtain , the original data.
Now we suppose that we multiply both the MDCT inputs and the IMDCT outputs by a window function of length 2N. As above, we assume a symmetric window function, which is therefore of the form where w and z are length-N/2 vectors and R denotes reversal as before. Then the Princen-Bradley condition can be written: , with the multiplications and additions performed elementwise, or equivalently (reversing w and z).
Therefore, instead of MDCTing , we now MDCT (with all multiplications performed elementwise). When this is IMDCTed and multiplied again (elementwise) by the window function, the last-N half becomes:
(Note that we no longer have the multiplication by 1/2, because the IMDCT normalization differs by a factor of 2 in the windowed case.)
Similarly, the windowed MDCT and IMDCT of yields, in its first-N half:
When we add these two halves together, we obtain:
recovering the original data.
Other overlapping windowed Fourier transforms include:
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
関連記事 | 「MD」 |
.