出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/06/02 01:11:48」(JST)
この項目では、公衆交換電話網のISDNについて説明しています。狭心症の治療薬については「硝酸イソソルビド」をご覧ください。 |
この項目はその主題が日本に置かれた記述になっており、世界的観点からの説明がされていない可能性があります。ノートでの議論と記事の発展への協力をお願いします。(2010年6月) |
TCP/IP群 | |
---|---|
アプリケーション層 | |
BGP / DHCP / DNS / FTP / HTTP / IMAP / IRC / LDAP / MGCP / NNTP / NTP / POP / RIP / RPC / RTP / SIP / SMTP / SNMP / SSH / Telnet / TFTP / TLS/SSL / XMPP カテゴリ |
|
トランスポート層 | |
TCP / UDP / DCCP / SCTP / RSVP カテゴリ |
|
ネットワーク層 | |
IP (IPv4, IPv6) / ICMP / ICMPv6 / NDP / IGMP / IPsec カテゴリ |
|
リンク層 | |
ARP / OSPF / SPB / トンネリング (L2TP) / PPP / MAC (イーサネット, IEEE 802.11, DSL, ISDN) カテゴリ |
ISDN(アイエスディーエヌ、Integrated Services Digital Network、サービス総合ディジタル網[1][2])とは交換機・中継回線・加入者線まで全てデジタル化された、パケット通信・回線交換データ通信にも利用できるデジタル回線網である。ISDNはモデムで接続する既存の公衆交換電話網 (PSTN) をデジタル化することで、高速で高品質な回線サービスを提供する。ITU-T(電気通信標準化部門)によって世界共通のIシリーズ規格として定められている。
音声は、0.3 - 3.4kHzを64kbpsの回線交換でISDN網内を伝送しているため、VoIPよりも音声品質が安定している。また北米・日本はμ則、その他の国々ではA則がPCM非直線符号化に使用されているため北米・日本側の関門電話交換機で変換している。
電話番号は、通常の市外局番のものがDチャネル1つあたり1つ割り当てられる。また「ダイヤルイン」や「i・ナンバー」を申し込むことにより、電話番号の追加が有料で可能である。ダイヤルインを利用した番号の追加はDチャネル毎に与えられた1つの番号を含めて最大で9999番号、i・ナンバーを利用した番号の追加はDチャネル毎に与えられた1つの番号を含めて最大3番号で番号の利用は回線につながったISDNターミナルアダプタに番号を設定する事でIインターフェースに2チャネルあるBチャネルと1チャネルあるDチャネルで自由に利用することが出来る。また、ダイヤルインやi・ナンバーの電話番号は通常の市外局番の電話番号以外にフリーダイヤルの0120や0800で始まる番号や情報提供料を発信者に課金するダイヤルQ2の0990で始まる番号、#ダイヤル(着信短縮ダイヤルサービス)の番号などの割り当てを受けることも可能。
ISDN相互間の通信の場合、サブアドレスという付加番号を電話番号の後に付け同じ電話番号の中から特定の端末を指定しての呼び出しが可能である。またサービスクラスと呼ばれる可能な通信方法を呼び出し時に知らせる機能により、ファクシミリからの発信の場合にファクシミリのみ応答させるといったことが可能である。
かつてはINS回線と通常のアナログ加入電話回線では加入者線が収容される交換機が異なるために、移行時には必ず電話番号が変更となった(このため、市内局番の枯渇が生じたため、一部の市内局番の収容局番の少ないところを他の収容局で利用する嚆矢となった。例として秋田市の岩見三内収容局で使われていた883・884局は、何れも下4桁が2000番台しか当該収容局で使われていなかったため2000番台以外の一部を前者は秋田大町収容局のISDN番号用、後者は新棟秋田収容局のISDN番号用に転用された。代わって、岩見三内収容局のISDN用番号は881-2xxxが割り当てられた)。
アナログ回線からINS回線への変更時に同番移行が全国で可能になったのは1997年4月末のことである[3]。この後もINSからアナログへの同番移行はアナログ→INS同番移行を行なった回線をアナログ回線に戻すときのみ可能であったが、2002年9月2日に全回線で可能となった[4]。
余談だが、かつてのVodafone 3GからISDN回線に発呼した場合、呼び出し音が異なっていたことがある(ソフトバンクモバイルとなってからしばらくして、この現象はなくなっている)。
回線交換方式の場合、接続時間と通信地点間距離とで課金される。日本では、アナログ電話網と同じ料金である(離島特例通信を除く)。
バーチャルコール方式のパケット通信の場合、接続時間に関係なくパケットの長さと数のみで定まるデータ量課金である。
月額基本料金は、アナログ電話回線2回線分より安く設定されている。
日本では一般的な基本速度TCM-ISDNはヨーロッパ・アジアの基本速度Euro-ISDNと加入者線インタフェースが異なるため、回線終端装置 (DSU) の互換性は無い。また、一次群速度加入者線インタフェースについても地域によって異なっている。
DSU以外の部分は、ソフトウエアの変更のみで各国対応となる機器が多い。
基本インタフェースのNTの端末側(S点・T点)は終端された4線式のバス配線であり、ポイント・マルチポイント構成と呼ばれる1本当たり最大8台の端末の接続が可能である。
次の2種類がある。
また端末接続用のモジュラージャックはバス配線に直接取り付けるか、長さ1m以内のスタブを介して取り付ける。モジュラージャックから端末までのコードは原則は10m以内に制限されているが、ポイント・ポイント構成の場合に限り25mまで延長できる。
一次群速度インタフェースのNTの端末側(S点・T点)は4線式の配線であり、ポイント・ポイント構成と呼ばれる1本当たり1台のみの端末の接続が可能である。
伝送路から伝送された信号を回線終端装置 (NT1) でS点インタフェースに変換し、超高速伝送の可能なルータ・G4 FAXなどのS点インタフェース機器 (TE1) を接続する。また、構内交換機 (NT2) などを使用し内線通信などを可能にすることもある。
|TE1|--S点--|NT2|--T点--|NT1|-- (LI) U点--加入者線
S点インタフェースが複雑なために実際にS点インタフェースを備えた端末機器(G4 FAXやISDN対応電話機)は少なく、ターミナルアダプタ (TA) で変換して従来のアナログ電話機・ファクシミリ (TE2) やLAN・コンピュータ機器を接続して利用する形態が一般的に行われている。
ターミナルアダプタは、ISDN回線からの給電のみでは動作しない。そのため、乾電池などで停電補償を行うものがある。
|TE2|--R点--|TA|--S点--|NT2|--T点--|NT1|-- (LI) U点--加入者線
NT2とTAの機能を持ったターミナルアダプタの場合
|TE2|--R点--|TA + NT2|--T点--|NT1|-- (LI) U点--加入者線
また、NT1、NT2、TAの機能を全て備えたターミナルアダプタの場合は以下のようになる。
|TE2|--R点--|TA + NT2 + NT1|-- (LI) U点--加入者線
端末設備と電気通信回線設備との最初の接続点が分界点となる。具体的には基本速度インタフェースの場合は保安器または主配線盤の端末側ねじ止め部分、一次群速度インタフェースの場合は配線盤の光コネクタ部分である。
ISDNにはBとDの2つのチャネルがある。
Bチャネルを束ねたチャネルも定義されている。
基本速度インタフェース (BRI: Basic Rate Interface) は64kbpsの2個のデータチャネルと16kbpsの信号チャネルから構成され、2B+Dなどと表記される。基本速度インタフェースはSOHO、個人、バックアップ回線として利用される。ISDNには、基本速度インタフェースと一次群速度インタフェースの2種類がある。
加入者線伝送方式として、アナログ電話回線と同じ2芯ツイストペアケーブル通信線路が使用されることが多い。電話局設置の電話交換機からDSUの動作と音声通話に必要な最低限の給電が行われる。
伝送方式は、地域や電気通信事業者によって異なっている。
TCM-ISDNは、日本のNTT東日本・西日本の「INSネット64」で使用されている。
ピンポン伝送とも呼ばれる時分割方向制御方式 (Time Compression Multiplexing) でAMI符号化によるベースバンド伝送を行っている。使用する周波数帯域が広くなるが、伝送装置が単純となる。また加入者線間でタイミングを合わせて送受信を切り替えるため近端漏話が無く遠端漏話のみとなり、細い加入者線で長距離伝送が可能である。
周波数帯域が重なってしまうためADSL回線と加入者線(ISDN回線)の同時使用は不可能である。また相互干渉を抑えるAnnex C規格の採用や同じより対線の組にISDNとADSLを収容しないようにする収容代えが必要であるなど、日本国内の一部からはADSL普及を阻害したと批判されたこともあった。
日本におけるEuro-ISDNは、電力系通信事業者のISDNにて使用されている。また平成電電のISDNサービスもEuro-ISDNを採用していた。
ヨーロッパ・アジア諸国で使用されているEuro-ISDNはエコーキャンセラを用い、上り下りを同じ周波数帯域のデジタル変調で伝送している。使用する周波数帯域が狭くなるが、伝送装置が複雑となる。
Annex B のADSLと加入者線の同時使用が可能である。
一次群速度インタフェース (PRI: Primary Rate Interface) は、より多くのチャネルから構成される。企業やプロバイダの回線として利用される。
構成は、地域によって異なっている。
加入者線伝送方式として、2芯の光ケーブルが使用されることが多い。給電が行われないため、加入者側で電源の確保が必要である。
一次群速度インタフェースよりも高速な回線インタフェースである。
開発や試験サービスが行われていたが安価な常時接続で定額料金のIP加入者線サービスが提供されるようになり、一般家庭向けの商用サービス化は行われなかった。
旧日本電信電話公社によって1970年代から独自の研究が行われていた。高度情報通信システム (INS=Information Network System) と呼ばれ1984年、三鷹市・武蔵野市で現在のものと互換性のないYインタフェースで実用化試験が行われた。ちなみにYインタフェースでのINS (ISDN) 回線は回線構成が1B+1Dで通話と同時にFAXの送受信が行えないなど不便があったため、デジタルで通信を行う以外は旧来の電話と機能に変化が無いため現行のIインタフェースのISDN回線では回線構成が2B+Dになったらしい。
1988年4月19日に旧NTTによって「INSネット64」「INSネット1500]」の商標でIインタフェースによる商用サービスが開始され、1998年のNTT再編後はNTT東日本・西日本から提供されている。大阪市中央区淡路町にあるNTTのビルには「明日への通信 INS発祥の地 昭和63年4月」の石碑がある。また、2000年代に入り他の電気通信事業者のサービスも開始された。
登場当初はバーチャルコール方式パケット通信 (INS-P: INS-Packet switching service) による、大型コンピュータなどのパケット通信網 (DDX-P: Digital Data eXchange Packet switching service) へのアクセスなどから利用された。間欠送信であるクレジットカードの信用照会 (CAFIS) などに、パケット通信特有のデータ量による課金体系であることを生かして使用された。
また「INSネット1500」1回線で23本の回線が取れることを生かして、インターネットサービスプロバイダのダイヤルアップ接続用アクセスポイントの拡充に使用された。
1995年12月に、低価格のターミナルアダプタ「MN128」(NTT-TE東京(現NTT-ME)とビー・ユー・ジーの共同開発)が発売されたことが引き金となり、翌1996年に入ると日本電気やオムロンなどから低価格のターミナルアダプタの発売が相次ぎ価格が急速に低下。さらに深夜時間帯の市内・隣接地区の特定番号への通話が定額となる「テレホーダイ」サービスの開始もあり、それに伴いインターネットへのダイヤルアップ接続用途で個人や中小企業向けに一気に普及した。
しかし2000年代に入るころから2線の銅線の加入者線で高速・常時接続・定額料金のインターネット接続の可能なADSLが普及しはじめ、加入者線の共用が出来るアナログ電話回線に戻したりCATV・FTTH(光回線)も含めたブロードバンドインターネット接続によるIP電話への移行が増加し個人でのISDN加入者は減少している。
また企業では構内交換機が比較的高価になるが「INSネット1500」1回線で23本、「INSネット64」1回線で2本の電話回線が取れることからアナログ電話回線を多数引き込むよりも電話加入権(施設設置負担金)や毎月の回線使用料(基本料金)が安くなるため、多数の外線電話を束ねる用途でも普及していた。しかし1990年代の公衆網と専用線との接続の自由化で外線本数が減少し、さらに2000年代に入り交換設備の維持費の問題や料金の安いIPセントレックスの普及によって非常用通信の確保のための最低限の回線以外が大企業で解約されるようになった。さらにi・ナンバー、ダイヤルインで電話・FAXそれぞれに番号を与えて1つのISDN回線で兼用している中小事業所でも複数回線対応の0AB-J番号のプライマリIP電話への置き換えが進んでいる。
またプロバイダにおいても前述のブロードバンドインターネット接続の普及によってダイヤルアップ接続用のアクセスポイント回線がナビダイヤルを使った全国共通番号回線などの形に移行されて縮減されており、通信事業用のISDN加入も減少傾向にある。
上記の状況において、あえてISDNを利用する主な目的としては以下の事例がある。
なお日本国内において遍く提供されているように思われているがINSネット64の場合(メタル線)、収容局から加入者宅までのメタル線路長が8 - 10kmを超えるような場合には、サービス提供が困難であると言う問題がある。
2010年11月、NTT(東西)は、固定電話網の基幹部分を交換機方式(PSTN)からIP方式に完全に切り替える予定を発表した。交換機の寿命を勘案したため、移行を2020年頃に開始して2025年頃に終了する予定であり、代替としては「フレッツ光ネクスト」網 + 「ひかり電話」サービスを組み合わせたサービスへの移行が例示されている[5]。また、2011年6月にはISDNからの乗り換え向けに安価なプランの「フレッツ 光ライト」が開始され[6]、2012年5月にはISDN専用電話機等をひかり電話で使えるようにするNetcommunity VG230iが販売開始された[7]。
電力系通信事業者では10社中、沖縄通信ネットワーク (OTNet) を除く9社が導入したがHOTnet・HTNet・TOHKnetが既に撤退し、うち2社については総務省から割り当てられた市内局番も返上している。他の事業者でも一部で撤退を検討している地域もある(エネルギアコムが一部地域でのみサービスを廃止しているケースに見られる)が、現時点では正式には撤退を明言していない。
[ヘルプ] |
|
Integrated Services for Digital Network (ISDN) is a set of communication standards for simultaneous digital transmission of voice, video, data, and other network services over the traditional circuits of the public switched telephone network. It was first defined in 1988 in the CCITT red book.[1] Prior to ISDN, the telephone system was viewed as a way to transport voice, with some special services available for data. The key feature of ISDN is that it integrates speech and data on the same lines, adding features that were not available in the classic telephone system. There are several kinds of access interfaces to ISDN defined as Basic Rate Interface (BRI), Primary Rate Interface (PRI), Narrowband ISDN (N-ISDN), and Broadband ISDN (B-ISDN).
ISDN is a circuit-switched telephone network system, which also provides access to packet switched networks, designed to allow digital transmission of voice and data over ordinary telephone copper wires, resulting in potentially better voice quality than an analog phone can provide. It offers circuit-switched connections (for either voice or data), and packet-switched connections (for data), in increments of 64 kilobit/s. A major market application for ISDN in some countries is Internet access, where ISDN typically provides a maximum of 128 kbit/s in both upstream and downstream directions. Channel bonding can achieve a greater data rate; typically the ISDN B-channels of three or four BRIs (six to eight 64 kbit/s channels) are bonded.
ISDN should not be mistaken for its use with a specific protocol, such as Q.931 whereas ISDN is employed as the network, data-link and physical layers in the context of the OSI model. In a broad sense ISDN can be considered a suite of digital services existing on layers 1, 2, and 3 of the OSI model. ISDN is designed to provide access to voice and data services simultaneously.
However, common use reduced ISDN to be limited to Q.931 and related protocols, which are a set of protocols for establishing and breaking circuit switched connections, and for advanced calling features for the user. They were introduced in 1986.[2]
In a videoconference, ISDN provides simultaneous voice, video, and text transmission between individual desktop videoconferencing systems and group (room) videoconferencing systems.
Internet protocol suite |
---|
Application layer |
|
Transport layer |
|
Internet layer |
|
Link layer |
|
|
Integrated services refers to ISDN's ability to deliver at minimum two simultaneous connections, in any combination of data, voice, video, and fax, over a single line. Multiple devices can be attached to the line, and used as needed. That means an ISDN line can take care of most people's complete communications needs (apart from broadband Internet access and entertainment television) at a much higher transmission rate, without forcing the purchase of multiple analog phone lines. It also refers to integrated switching and transmission[3] in that telephone switching and carrier wave transmission are integrated rather than separate as in earlier technology.
The entry level interface to ISDN is the Basic(s) Rate Interface (BRI), a 128 kbit/s service delivered over a pair of standard telephone copper wires.[4] The 144 kbit/s payload rate is broken down into two 64 kbit/s bearer channels ('B' channels) and one 16 kbit/s signaling channel ('D' channel or data channel). This is sometimes referred to as 2B+D.[5]
The interface specifies the following network interfaces:
BRI-ISDN is very popular in Europe but is much less common in North America. It is also common in Japan — where it is known as INS64.[6][7]
The other ISDN access available is the Primary Rate Interface (PRI), which is carried over an E1 (2048 kbit/s) in most parts of the world. An E1 is 30 'B' channels of 64 kbit/s, one 'D' channel of 64 kbit/s and a timing and alarm channel of 64 kbit/s.
In North America PRI service is delivered on one or more T1 carriers (often referred to as 23B+D) of 1544 kbit/s (24 channels). A PRI has 23 'B' channels and 1 'D' channel for signalling (Japan uses a circuit called a J1, which is similar to a T1). Inter-changeably but incorrectly, a PRI is referred to as T1 because it uses the T1 carrier format. A true T1 (commonly called "Analog T1" to avoid confusion) uses 24 channels of 64 kbit/s of in-band signaling. Each channel uses 56 kb for data and voice and 8 kb for signaling and messaging. PRI uses out of band signaling which provides the 23 B channels with clear 64 kb for voice and data and one 64 kb 'D' channel for signaling and messaging. In North America, Non-Facility Associated Signalling allows two or more PRIs to be controlled by a single D channel, and is sometimes called "23B+D + n*24B". D-channel backup allows for a second D channel in case the primary fails. NFAS is commonly used on a T3.
PRI-ISDN is popular throughout the world, especially for connecting private branch exchanges to the public network.
Even though many network professionals use the term "ISDN" to refer to the lower-bandwidth BRI circuit, in North America BRI is relatively uncommon whilst PRI circuits serving PBXs are commonplace.
The bearer channel (B) is a standard 64 kbit/s voice channel of 8 bits sampled at 8 kHz with G.711 encoding. B-Channels can also be used to carry data, since they are nothing more than digital channels.
Each one of these channels is known as a DS0.
Most B channels can carry a 64 kbit/s signal, but some were limited to 56K because they traveled over RBS lines. This was commonplace in the 20th century, but has since become less so.
The signaling channel (D) uses Q.931 for signaling with the other side of the link.
X.25 can be carried over the B or D channels of a BRI line, and over the B channels of a PRI line. X.25 over the D channel is used at many point-of-sale (credit card) terminals because it eliminates the modem setup, and because it connects to the central system over a B channel, thereby eliminating the need for modems and making much better use of the central system's telephone lines.
X.25 was also part of an ISDN protocol called "Always On/Dynamic ISDN", or AO/DI. This allowed a user to have a constant multi-link PPP connection to the internet over X.25 on the D channel, and brought up one or two B channels as needed.
In theory, Frame Relay can operate over the D channel of BRIs and PRIs, but it is seldom, if ever, used.
There is a second viewpoint: that of the telephone industry, where ISDN is a core technology. A telephone network can be thought of as a collection of wires strung between switching systems. The common electrical specification for the signals on these wires is T1 or E1. Between telephone company switches, the signaling is performed via SS7. Normally, a PBX is connected via a T1 with robbed bit signaling to indicate on-hook or off-hook conditions and MF and DTMF tones to encode the destination number. ISDN is much better because messages can be sent much more quickly than by trying to encode numbers as long (100 ms per digit) tone sequences. This results in faster call setup times. Also, a greater number of features are available and fraud is reduced.
ISDN is also used as a smart-network technology intended to add new services to the public switched telephone network (PSTN) by giving users direct access to end-to-end circuit-switched digital services and as a backup or failsafe circuit solution for critical use data circuits.
ISDN is used heavily by the broadcast industry as a reliable way of switching low-latency, high-quality, long-distance audio circuits. In conjunction with an appropriate codec using MPEG or various manufacturers proprietary algorithms, an ISDN BRI can be used to send stereo bi-directional audio coded at 128 kbit/s with 20 Hz – 20 kHz audio bandwidth, although commonly the G.722 algorithm is used with a single 64 kbit/s B channel to send much lower latency mono audio at the expense of audio quality. Where very high quality audio is required multiple ISDN BRIs can be used in parallel to provide a higher bandwidth circuit switched connection. BBC Radio 3 commonly makes use of three ISDN BRIs to carry 320 kbit/s audio stream for live outside broadcasts. ISDN BRI services are used to link remote studios, sports grounds and outside broadcasts into the main broadcast studio. ISDN via satellite is used by field reporters around the world. It is also common to use ISDN for the return audio links to remote satellite broadcast vehicles.
In many countries, such as the UK and Australia, ISDN has displaced the older technology of equalised analogue landlines, with these circuits being phased out by telecommunications providers. IP-based streaming codecs are starting to gain a foothold in the broadcast sector, using broadband internet to connect remote studios.[8] However, reliability and latency is crucially important for broadcasters and the quality of service offered by ISDN has not yet been matched by packet switched alternatives.
ISDN-BRI never gained popularity as a general use telephone access technology in Canada and the US, and remains a niche product. The service was seen as a solution in search of a problem,[9] and the extensive array of options and features were difficult for customers to understand and use. ISDN has long been known by derogatory backronyms highlighting these issues, such as It Still Does Nothing, Innovations Subscribers Don't Need, and I Still Don't kNow.[10][11]
Once the concept of broadband Internet access came to be associated with data rates incoming to the customer at 256 kbit/s or more,[a] and alternatives like ADSL grew in popularity, the consumer market for BRI did not develop. Its only remaining advantage is that while ADSL has a functional distance limitation and can use ADSL loop extenders, BRI has a greater limit and can use repeaters. As such, BRI may be acceptable for customers who are too remote for ADSL. Widespread use of BRI is further stymied by some small North American CLECs such as CenturyTel having given up on it and not providing Internet access using it.[12] However, AT&T in most states (especially the former SBC/SWB territory) will still install an ISDN BRI line anywhere a normal analog line can be placed and the monthly charge is roughly $55.
ISDN-BRI is currently primarily used in industries with specialized and very specific needs. High-end videoconferencing hardware made by companies such as Sony, Polycom, Tandberg, and LifeSize via the LifeSize Networker[13] can bond up to 8 B-channels together (using a BRI circuit for every 2 channels) to provide digital, circuit-switched video connections to almost anywhere in the world. This is very expensive, and is being replaced by IP-based conferencing, but where cost concern is less of an issue than predictable quality and where a QoS-enabled IP does not exist, BRI is the preferred choice.
Most modern non-VoIP PBXs use ISDN-PRI circuits. These are connected via T1 lines with the central office switch, replacing older analog two-way and direct inward dialing (DID) trunks. PRI is capable of delivering Calling Line Identification (CLID) in both directions so that the telephone number of an extension, rather than a company's main number, can be sent. It is still commonly used in recording studios, when a voice-over actor is in one studio, but the director and producer are in a studio at another location.[4] The ISDN protocol delivers channelized, not-over-the-Internet service, powerful call setup and routing features, faster setup and tear down, superior audio fidelity as compared to POTS (plain old telephone service), lower delay and, at higher densities, lower cost.
In 2013, Verizon announced it would no longer take orders for ISDN service in the Northeastern United States.[4]
Bharat Sanchar Nigam Limited, Reliance Communications and Bharti Airtel are the largest communication service providers, and offer both ISDN BRI and PRI services across the country. Reliance Communications and Bharti Airtel uses the DLC technology for providing these services. With the introduction of broadband technology, the load on bandwidth is being absorbed by ADSL. ISDN continues to be an important backup network for point-to-point leased line customers such as banks, Eseva Centers,[14] Life Insurance Corporation of India, and SBI ATMs.
On April 19, 1988, Japanese telecommunications company NTT began offering nationwide ISDN services trademarked INS Net 64, and INS Net 1500, a fruition of NTT's independent research and trial from the 1970s of what it referred to the INS (Information Network System).[15]
Previously, on April 1985, Japanese digital telephone exchange hardware made by Fujitsu was used to experimentally deploy the world's first I interface ISDN. The I interface, unlike the older and incompatible Y interface, is what modern ISDN services use today.
Since 2000, NTT's ISDN offering have been known as FLET's ISDN, incorporating the "FLET's" brand that NTT uses for all of its ISP offerings.
In Japan, the number of ISDN subscribers dwindled as alternative technologies such as ADSL, cable Internet access, and fiber to the home gained greater popularity. On November 2, 2010, NTT announced plans to migrate their backend from PSTN to the IP network from around 2020 to around 2025. For this migration, ISDN services will be retired, and fiber optic services are recommended as an alternative.[16]
In the United Kingdom, British Telecom (BT) provides ISDN2e (BRI) as well as ISDN30 (PRI). Until April 2006, they also offered services named Home Highway and Business Highway, which were BRI ISDN-based services that offered integrated analogue connectivity as well as ISDN. Later versions of the Highway products also included built-in universal serial bus (USB) sockets for direct computer access. Home Highway was bought by many home users, usually for Internet connection, although not as fast as ADSL, because it was available before ADSL and in places where ADSL does not reach.
France Telecom offers ISDN services under their product name Numeris (2 B+D), of which a professional Duo and home Itoo version is available. ISDN is generally known as RNIS in France and has widespread availability. The introduction of ADSL is reducing ISDN use[when?] for data transfer and Internet access, although it is still common in more rural and outlying areas, and for applications such as business voice and point-of-sale terminals.
In Germany, ISDN is very popular with an installed base of 25 million channels (29% of all subscriber lines in Germany as of 2003 and 20% of all ISDN channels worldwide). Due to the success of ISDN, the number of installed analog lines is decreasing. Deutsche Telekom (DTAG) offers both BRI and PRI. Competing phone companies often offer ISDN only and no analog lines. However, these operators generally offer free hardware that also allows the use of POTS equipment, such as NTBAs[b] with integrated terminal adapters. Because of the widespread availability of ADSL services, ISDN is today primarily used for voice and fax traffic, but is still very popular thanks to the pricing policy of German telecommunication providers.
Today ISDN (BRI) and ADSL/VDSL are often bundled on the same line, mainly because the combination of ADSL with an analog line has no cost advantage over a combined ISDN-ADSL line. Some German operators started to implement Next Generation Networking, generally realized via DSL and unbundled local loop. However, a few operators offer the same services via the cable television infrastructure or, in selected areas, via FTTH. Because of the popularity of ISDN, virtually all these telecommunication providers bundle their products with residential gateways that include both integrated analog telephony adapters and ISDN-NGN adapters.
OTE, the incumbent telecommunications operator, offers ISDN BRI (BRA) services in Greece. Following the launch of ADSL in 2003, the importance of ISDN for data transfer began to decrease and is today limited to niche business applications with point-to-point requirements.
A study[17] of the German Department of Science shows the following spread of ISDN-channels per 1,000 inhabitants in the year 2005:
In ISDN, there are two types of channels, B (for "bearer") and D (for "data"). B channels are used for data (which may include voice), and D channels are intended for signaling and control (but can also be used for data).
There are two ISDN implementations. Basic Rate Interface (BRI), also called basic rate access (BRA) — consists of two B channels, each with bandwidth of 64 kbit/s, and one D channel with a bandwidth of 16 kbit/s. Together these three channels can be designated as 2B+D. Primary Rate Interface (PRI), also called primary rate access (PRA) in Europe — contains a greater number of B channels and a D channel with a bandwidth of 64 kbit/s. The number of B channels for PRI varies according to the nation: in North America and Japan it is 23B+1D, with an aggregate bit rate of 1.544 Mbit/s (T1); in Europe, India and Australia it is 30B+1D, with an aggregate bit rate of 2.048 Mbit/s (E1). Broadband Integrated Services Digital Network (BISDN) is another ISDN implementation and it is able to manage different types of services at the same time. It is primarily used within network backbones and employs ATM.
Another alternative ISDN configuration can be used in which the B channels of an ISDN BRI line are bonded to provide a total duplex bandwidth of 128 kbit/s. This precludes use of the line for voice calls while the internet connection is in use. The B channels of several BRIs can be bonded, a typical use is a 384K videoconferencing channel.
Using bipolar with eight-zero substitution encoding technique, call data is transmitted over the data (B) channels, with the signaling (D) channels used for call setup and management. Once a call is set up, there is a simple 64 kbit/s synchronous bidirectional data channel (actually implemented as two simplex channels, one in each direction) between the end parties, lasting until the call is terminated. There can be as many calls as there are bearer channels, to the same or different end-points. Bearer channels may also be multiplexed into what may be considered single, higher-bandwidth channels via a process called B channel BONDING, or via use of Multi-Link PPP "bundling" or by using an H0, H11, or H12 channel on a PRI.
The D channel can also be used for sending and receiving X.25 data packets, and connection to X.25 packet network, this is specified in X.31. In practice, X.31 was only commercially implemented in UK, France and Japan.
A set of reference points are defined in the ISDN standard to refer to certain points between the telco and the end user ISDN equipment.
Most NT-1 devices can perform the functions of the NT2 as well, and so the S and T reference points are generally collapsed into the S/T reference point.
In North America, the NT1 device is considered customer premises equipment (CPE) and must be maintained by the customer, thus, the U interface is provided to the customer. In other locations, the NT1 device is maintained by the telco, and the S/T interface is provided to the customer. In India, service providers provide U interface and an NT1 may be supplied by Service provider as part of service offering.
Among the kinds of data that can be moved over the 64 kbit/s channels are pulse-code modulated voice calls, providing access to the traditional voice PSTN. This information can be passed between the network and the user end-point at call set-up time. In North America, ISDN is now used mostly as an alternative to analog connections, most commonly for Internet access. Some of the services envisioned as being delivered over ISDN are now delivered over the Internet instead. In Europe, and in Germany in particular, ISDN has been successfully marketed as a phone with features, as opposed to a POTS phone with few or no features. Meanwhile, features that were first available with ISDN (such as Three-Way Calling, Call Forwarding, Caller ID, etc.) are now commonly available for ordinary analog phones as well, eliminating this advantage of ISDN. Another advantage of ISDN was the possibility of multiple simultaneous calls (one call per B channel), e.g. for big families, but with the increased popularity and reduced prices of mobile telephony this has become less interesting as well, making ISDN unappealing to the private customer. However, ISDN is typically more reliable than POTS, and has a significantly faster call setup time compared with POTS, and IP connections over ISDN typically have some 30–35ms round trip time, as opposed to 120–180ms (both measured with otherwise unused lines) over 56k or V.34/V.92 modems, making ISDN more reliable and more efficient for telecommuters.
Where an analog connection requires a modem, an ISDN connection requires a terminal adapter (TA). The function of an ISDN terminal adapter is often delivered in the form of a PC card with an S/T interface, and single-chip solutions seem to exist, considering the plethora of combined ISDN- and ADSL-routers.
ISDN is commonly used in radio broadcasting. Since ISDN provides a high quality connection this assists in delivering good quality audio for transmission in radio. Most radio studios are equipped with ISDN lines as their main form of communication with other studios or standard phone lines. Equipment made by companies such as Telos/Omnia (the popular Zephyr codec), Comrex, Tieline and others are used regularly by radio broadcasters. Almost all live sports broadcasts on radio are backhauled to their main studios via ISDN connections.
The following is an example of a Primary Rate (PRI) ISDN call showing the Q.921/LAPD and the Q.931/Network message intermixed (i.e. exactly what was exchanged on the D-channel). The call is originating from the switch where the trace was taken and goes out to some other switch, possibly an end-office LEC, who terminates the call.
The first line format is <time> <D-channel> <Transmitted/Received> <LAPD/ISDN message ID>. If the message is an ISDN level message, then a decoding of the message is attempted showing the various Information Elements that make up the message. All ISDN messages are tagged with an ID number relative to the switch that started the call (local/remote). Following this optional decoding is a dump of the bytes of the message in <offset> <hex> ... <hex> <ascii> ... <ascii> format.
The RR messages at the beginning prior to the call are the keep alive messages. SETUP message indicate the start of the call. Each message is acknowledged by the other side with a RR.
10:49:47.33 21/1/24 R RR 0000 02 01 01 a5 .... 10:49:47.34 21/1/24 T RR 0000 02 01 01 b9 .... 10:50:17.57 21/1/24 R RR 0000 02 01 01 a5 .... 10:50:17.58 21/1/24 T RR 0000 02 01 01 b9 .... 10:50:24.37 21/1/24 T SETUP Call Reference : 000062-local Bearer Capability : CCITT, Speech, Circuit mode, 64 kbit/s Channel ID : Implicit Interface ID implies current span, 21/1/5, Exclusive Calling Party Number : 8018023000 National number User-provided, not screened Presentation allowed Called Party Number : 3739120 Type: SUBSCRB 0000 00 01 a4 b8 08 02 00 3e 05 04 03 80 90 a2 18 03 .......>........ 0010 a9 83 85 6c 0c 21 80 38 30 31 38 30 32 33 30 30 ...l.!.801802300 0020 30 70 08 c1 33 37 33 39 31 32 30 0p..3739120 10:50:24.37 21/1/24 R RR 0000 00 01 01 a6 .... 10:50:24.77 21/1/24 R CALL PROCEEDING Call Reference : 000062-local Channel ID : Implicit Interface ID implies current span, 21/1/5, Exclusive 0000 02 01 b8 a6 08 02 80 3e 02 18 03 a9 83 85 .......>...... 10:50:24.77 21/1/24 T RR 0000 02 01 01 ba .... 10:50:25.02 21/1/24 R ALERTING Call Reference : 000062-local Progress Indicator : CCITT, Public network serving local user, In-band information or an appropriate pattern is now available 0000 02 01 ba a6 08 02 80 3e 01 1e 02 82 88 .......>..... 10:50:25.02 21/1/24 T RR 0000 02 01 01 bc .... 10:50:28.43 21/1/24 R CONNECT Call Reference : 000062-local 0000 02 01 bc a6 08 02 80 3e 07 .......>. 10:50:28.43 21/1/24 T RR 0000 02 01 01 be .... 10:50:28.43 21/1/24 T CONNECT_ACK Call Reference : 000062-local 0000 00 01 a6 be 08 02 00 3e 0f .......>. 10:50:28.44 21/1/24 R RR 0000 00 01 01 a8 .... 10:50:35.69 21/1/24 T DISCONNECT Call Reference : 000062-local Cause : 16, Normal call clearing. 0000 00 01 a8 be 08 02 00 3e 45 08 02 8a 90 .......>E.... 10:50:35.70 21/1/24 R RR 0000 00 01 01 aa .... 10:50:36.98 21/1/24 R RELEASE Call Reference : 000062-local 0000 02 01 be aa 08 02 80 3e 4d .......>M 10:50:36.98 21/1/24 T RR 0000 02 01 01 c0 .... 10:50:36.99 21/1/24 T RELEASE COMPLETE Call Reference : 000062-local 0000 00 01 aa c0 08 02 00 3e 5a .......>Z 10:50:36.00 21/1/24 R RR 0000 00 01 01 ac .... 10:51:06.10 21/1/24 R RR 0000 02 01 01 ad .... 10:51:06.10 21/1/24 T RR 0000 02 01 01 c1 .... 10:51:36.37 21/1/24 R RR 0000 02 01 01 ad .... 10:51:36.37 21/1/24 T RR 0000 02 01 01 c1 ....
Specifications defining the physical layer and part of the data link layers of ISDN:
From the point of view of the OSI architecture, an ISDN line has a stack of three protocols
You may not obtain Internet services over ISDN lines (BRI or PRI), dedicated circuits or special service circuits.
|chapter=
ignored (help)Wikibooks has a book on the topic of: Nets, Webs and the Information Infrastructure |
|
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「二硝酸イソソルビド」「isosorbide dinitrate」 |
関連記事 | 「IS」「ISD」 |
.