- 関
- G-protein-coupled receptor kinase 3
Wikipedia preview
出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2016/11/15 04:02:25」(JST)
[Wiki en表示]
GRK3 |
|
Identifiers |
Aliases |
GRK3, BARK2, ADRBK2, Beta adrenergic receptor kinase-2, G protein-coupled receptor kinase 3 |
External IDs |
MGI: 87941 HomoloGene: 21072 GeneCards: GRK3 |
|
Targeted by Drug |
balanol[1] |
Gene ontology |
Molecular function |
• G-protein coupled receptor kinase activity
• ATP binding
• transferase activity
• protein kinase activity
• nucleotide binding
• protein serine/threonine kinase activity
• kinase activity
• beta-adrenergic receptor kinase activity
|
Cellular component |
• plasma membrane
|
Biological process |
• protein phosphorylation
• receptor internalization
• phosphorylation
• signal transduction
|
Sources:Amigo / QuickGO |
|
RNA expression pattern |
|
More reference expression data |
Orthologs |
Species |
Human |
Mouse |
Entrez |
|
|
Ensembl |
|
|
UniProt |
|
|
RefSeq (mRNA) |
|
|
NM_001035531
NM_001285806
NM_177078
|
|
RefSeq (protein) |
|
|
NP_001272735.1
NP_796052.2
|
|
Location (UCSC) |
Chr 22: 25.56 – 25.73 Mb |
Chr 5: 112.91 – 113.02 Mb |
PubMed search |
[2] |
[3] |
Wikidata |
View/Edit Human |
View/Edit Mouse |
Beta-adrenergic receptor kinase 2 (beta-ARK-2) also known as G-protein-coupled receptor kinase 3 (GRK3) is an enzyme that in humans is encoded by the ADRBK2 gene.[4][5]
Contents
- 1 Function
- 2 Discovery
- 3 Clinical significance
- 4 References
- 5 Further reading
- 6 External links
Function
The beta-adrenergic receptor kinase specifically phosphorylates the agonist-occupied form of the beta-adrenergic and related G protein-coupled receptors. Overall, the beta adrenergic receptor kinase 2 has 85% amino acid similarity with beta adrenergic receptor kinase 1, with the protein kinase catalytic domain having 95% similarity. These data suggest the existence of a family of receptor kinases which may serve broadly to regulate receptor function.[5]
Discovery
The beta adrenergic receptor kinase-2 was cloned from mice and rats in 1991[6] and the human gene was cloned in 1993.[7]
Clinical significance
gene linkage techniques were used to identify a mutation in the GRK3 gene as a possible cause of up to 10% of cases of bipolar disorder.[8] Beta adrenergic receptor kinase-2 appears to affect dopamine metabolism. Subsequent studies, while noting that chromosome 22q12 may harbor a risk gene for schizophrenia, did not find that the gene coding for beta adrenergic receptor kinase-2 was linked to schizophrenia.[9]
It has been associated with WHIM syndrome.[10]
References
- ^ "Drugs that physically interact with Beta-adrenergic receptor kinase 2 view/edit references on wikidata".
- ^ "Human PubMed Reference:".
- ^ "Mouse PubMed Reference:".
- ^ Calabrese G, Sallese M, Stornaiuolo A, Stuppia L, Palka G, De Blasi A (Feb 1995). "Chromosome mapping of the human arrestin (SAG), beta-arrestin 2 (ARRB2), and beta-adrenergic receptor kinase 2 (ADRBK2) genes". Genomics. 23 (1): 286–8. doi:10.1006/geno.1994.1497. PMID 7695743.
- ^ a b "Entrez Gene: ADRBK2 adrenergic, beta, receptor kinase 2".
- ^ Benovic JL, Onorato JJ, Arriza JL, Stone WC, Lohse M, Jenkins NA, Gilbert DJ, Copeland NG, Caron MG, Lefkowitz RJ (August 1991). "Cloning, expression, and chromosomal localization of beta-adrenergic receptor kinase 2. A new member of the receptor kinase family". J. Biol. Chem. 266 (23): 14939–46. PMID 1869533.
- ^ Parruti G, Ambrosini G, Sallese M, De Blasi A (January 1993). "Molecular cloning, functional expression and mRNA analysis of human beta-adrenergic receptor kinase 2". Biochem. Biophys. Res. Commun. 190 (2): 475–81. doi:10.1006/bbrc.1993.1072. PMID 8427589.
- ^ Barrett TB, Hauger RL, Kennedy JL, Sadovnick AD, Remick RA, Keck PE, McElroy SL, Alexander M, Shaw SH, Kelsoe JR (May 2003). "Evidence that a single nucleotide polymorphism in the promoter of the G protein receptor kinase 3 gene is associated with bipolar disorder". Mol. Psychiatry. 8 (5): 546–57. doi:10.1038/sj.mp.4001268. PMID 12808434.
- ^ Yu SY, Takahashi S, Arinami T, Ohkubo T, Nemoto Y, Tanabe E, Fukura Y, Matsuura M, Han YH, Zhou RL, Shen YC, Matsushima E, Kojima T (February 2004). "Mutation screening and association study of the beta-adrenergic receptor kinase 2 gene in schizophrenia families". Psychiatry Res. 125 (2): 95–104. doi:10.1016/j.psychres.2003.12.003. PMID 15006433.
- ^ Balabanian K, Levoye A, Klemm L, et al. (March 2008). "Leukocyte analysis from WHIM syndrome patients reveals a pivotal role for GRK3 in CXCR4 signaling". J. Clin. Invest. 118 (3): 1074–84. doi:10.1172/JCI33187. PMC 2242619. PMID 18274673.
Further reading
- Benovic JL, Onorato JJ, Arriza JL, et al. (1991). "Cloning, expression, and chromosomal localization of beta-adrenergic receptor kinase 2. A new member of the receptor kinase family". J. Biol. Chem. 266 (23): 14939–46. PMID 1869533.
- Parruti G, Ambrosini G, Sallese M, De Blasi A (1993). "Molecular cloning, functional expression and mRNA analysis of human beta-adrenergic receptor kinase 2". Biochem. Biophys. Res. Commun. 190 (2): 475–81. doi:10.1006/bbrc.1993.1072. PMID 8427589.
- Oppermann M, Freedman NJ, Alexander RW, Lefkowitz RJ (1996). "Phosphorylation of the type 1A angiotensin II receptor by G protein-coupled receptor kinases and protein kinase C". J. Biol. Chem. 271 (22): 13266–72. doi:10.1074/jbc.271.22.13266. PMID 8662816.
- Premont RT, Claing A, Vitale N, et al. (1998). "β2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein". Proc. Natl. Acad. Sci. U.S.A. 95 (24): 14082–7. doi:10.1073/pnas.95.24.14082. PMC 24330. PMID 9826657.
- Oppermann M, Mack M, Proudfoot AE, Olbrich H (1999). "Differential effects of CC chemokines on CC chemokine receptor 5 (CCR5) phosphorylation and identification of phosphorylation sites on the CCR5 carboxyl terminus". J. Biol. Chem. 274 (13): 8875–85. doi:10.1074/jbc.274.13.8875. PMID 10085131.
- Dunham I, Shimizu N, Roe BA, et al. (1999). "The DNA sequence of human chromosome 22". Nature. 402 (6761): 489–95. doi:10.1038/990031. PMID 10591208.
- Inngjerdingen M, Damaj B, Maghazachi AA (2000). "Human NK cells express CC chemokine receptors 4 and 8 and respond to thymus and activation-regulated chemokine, macrophage-derived chemokine, and I-309". J. Immunol. 164 (8): 4048–54. doi:10.4049/jimmunol.164.8.4048. PMID 10754297.
- Celver JP, Lowe J, Kovoor A, et al. (2001). "Threonine 180 is required for G-protein-coupled receptor kinase 3- and beta-arrestin 2-mediated desensitization of the mu-opioid receptor in Xenopus oocytes". J. Biol. Chem. 276 (7): 4894–900. doi:10.1074/jbc.M007437200. PMID 11060299.
- Blaukat A, Pizard A, Breit A, et al. (2001). "Determination of bradykinin B2 receptor in vivo phosphorylation sites and their role in receptor function". J. Biol. Chem. 276 (44): 40431–40. doi:10.1074/jbc.M107024200. PMID 11517230.
- Wang J, Guan E, Roderiquez G, et al. (2002). "Role of tyrosine phosphorylation in ligand-independent sequestration of CXCR4 in human primary monocytes-macrophages". J. Biol. Chem. 276 (52): 49236–43. doi:10.1074/jbc.M108523200. PMID 11668182.
- Obara K, Arai K, Tomita Y, et al. (2002). "G-protein coupled receptor kinase 2 and 3 expression in human detrusor cultured smooth muscle cells". Urol. Res. 29 (5): 325–9. doi:10.1007/s002400100207. PMID 11762794.
- Mandyam CD, Thakker DR, Christensen JL, Standifer KM (2002). "Orphanin FQ/nociceptin-mediated desensitization of opioid receptor-like 1 receptor and mu opioid receptors involves protein kinase C: a molecular mechanism for heterologous cross-talk". J. Pharmacol. Exp. Ther. 302 (2): 502–9. doi:10.1124/jpet.102.033159. PMID 12130708.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Barrett TB, Hauger RL, Kennedy JL, et al. (2004). "Evidence that a single nucleotide polymorphism in the promoter of the G protein receptor kinase 3 gene is associated with bipolar disorder". Mol. Psychiatry. 8 (5): 546–57. doi:10.1038/sj.mp.4001268. PMID 12808434.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.
- Dzimiri N, Muiya P, Andres E, Al-Halees Z (2005). "Differential functional expression of human myocardial G protein receptor kinases in left ventricular cardiac diseases". Eur. J. Pharmacol. 489 (3): 167–77. doi:10.1016/j.ejphar.2004.03.015. PMID 15087239.
- Teli T, Markovic D, Levine MA, et al. (2005). "Regulation of corticotropin-releasing hormone receptor type 1alpha signaling: structural determinants for G protein-coupled receptor kinase-mediated phosphorylation and agonist-mediated desensitization". Mol. Endocrinol. 19 (2): 474–90. doi:10.1210/me.2004-0275. PMID 15498832.
- Feng YH, Wang L, Wang Q, et al. (2005). "ATP stimulates GRK-3 phosphorylation and β-arrestin-2-dependent internalization of P2X7 receptor". Am. J. Physiol., Cell Physiol. 288 (6): C1342–56. doi:10.1152/ajpcell.00315.2004. PMC 2598767. PMID 15728711.
- Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514.
External links
- Online version of the paper in Molecular Psychiatry
- PubMed abstract
- Report from sciencedaily.com
Kinases: Serine/threonine-specific protein kinases (EC 2.7.11-12)
|
|
Serine/threonine-specific protein kinases (EC 2.7.11.1-EC 2.7.11.20)
|
|
|
|
|
Serine/threonine-specific protein kinases (EC 2.7.11.21-EC 2.7.11.30)
|
|
Polo kinase (EC 2.7.11.21) |
|
|
Cyclin-dependent kinase (EC 2.7.11.22) |
- CDK1
- CDK2
- CDKL2
- CDK3
- CDK4
- CDK5
- CDKL5
- CDK6
- CDK7
- CDK8
- CDK9
- CDK10
- CDK12
- CDC2L5
- PCTK1
- PCTK2
- PCTK3
- PFTK1
- CDC2L1
|
|
(RNA-polymerase)-subunit kinase (EC 2.7.11.23) |
- RPS6KA5
- RPS6KA4
- P70S6 kinase
- P70-S6 Kinase 1
- RPS6KB2
- RPS6KA2
- RPS6KA3
- RPS6KA1
- RPS6KC1
|
|
Mitogen-activated protein kinase (EC 2.7.11.24) |
- Extracellular signal-regulated
- MAPK1
- MAPK3
- MAPK4
- MAPK6
- MAPK7
- MAPK12
- MAPK15
- C-Jun N-terminal
- P38 mitogen-activated protein
|
|
MAP3K (EC 2.7.11.25) |
- MAP kinase kinase kinases
- MAP3K1
- MAP3K2
- MAP3K3
- MAP3K4
- MAP3K5
- MAP3K6
- MAP3K7
- MAP3K8
- RAFs
- MLKs
- MAP3K12
- MAP3K13
- MAP3K9
- MAP3K10
- MAP3K11
- MAP3K7
- ZAK
- CDC7
- MAP3K14
|
|
Tau-protein kinase (EC 2.7.11.26) |
|
|
(acetyl-CoA carboxylase) kinase (EC 2.7.11.27) |
|
|
Tropomyosin kinase (EC 2.7.11.28) |
|
|
Low-density-lipoprotein receptor kinase (EC 2.7.11.29) |
|
|
Receptor protein serine/threonine kinase (EC 2.7.11.30) |
- Bone morphogenetic protein receptors
- BMPR1
- BMPR1A
- BMPR1B
- BMPR2
- ACVR1
- ACVR1B
- ACVR1C
- ACVR2A
- ACVR2B
- ACVRL1
- Anti-Müllerian hormone receptor
|
|
|
|
Dual-specificity kinases (EC 2.7.12)
|
|
MAP2K |
- MAP2K1
- MAP2K2
- MAP2K3
- MAP2K4
- MAP2K5
- MAP2K6
- MAP2K7
|
|
|
Enzymes
|
|
Activity |
- Active site
- Binding site
- Catalytic triad
- Oxyanion hole
- Enzyme promiscuity
- Catalytically perfect enzyme
- Coenzyme
- Cofactor
- Enzyme catalysis
- Enzyme kinetics
- Lineweaver–Burk plot
- Michaelis–Menten kinetics
|
|
Regulation |
- Allosteric regulation
- Cooperativity
- Enzyme inhibitor
|
|
Classification |
- EC number
- Enzyme superfamily
- Enzyme family
- List of enzymes
|
|
Types |
- EC1 Oxidoreductases (list)
- EC2 Transferases (list)
- EC3 Hydrolases (list)
- EC4 Lyases (list)
- EC5 Isomerases (list)
- EC6 Ligases (list)
|
UpToDate Contents
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
English Journal
- Loss of morphine reward and dependence in mice lacking G protein-coupled receptor kinase 5.
- Glück L1, Loktev A1, Moulédous L2, Mollereau C2, Law PY3, Schulz S4.
- Biological psychiatry.Biol Psychiatry.2014 Nov 15;76(10):767-74. doi: 10.1016/j.biopsych.2014.01.021. Epub 2014 Feb 3.
- BACKGROUND: The clinical benefits of opioid drugs are counteracted by the development of tolerance and addiction. We provide in vivo evidence for the involvement of G protein-coupled receptor kinases (GRKs) in opioid dependence in addition to their roles in agonist-selective mu-opioid receptor (MOR)
- PMID 24629717
- Evaluation of the role of g protein-coupled receptor kinase 3 in desensitization of mouse odorant receptors in a Mammalian cell line and in olfactory sensory neurons.
- Kato A1, Reisert J2, Ihara S3, Yoshikawa K1, Touhara K4.
- Chemical senses.Chem Senses.2014 Nov;39(9):771-80. doi: 10.1093/chemse/bju050. Epub 2014 Oct 13.
- Thousands of odors are sensed and discriminated by G protein-coupled odorant receptors (ORs) expressed in olfactory sensory neurons (OSNs). G protein-coupled receptor kinases (GRKs) may have a role in desensitization of ORs. However, whether ORs are susceptible to agonist-dependent desensitization a
- PMID 25313015
- Multiple functions of G protein-coupled receptor kinases.
- Watari K, Nakaya M, Kurose H1.
- Journal of molecular signaling.J Mol Signal.2014 Mar 6;9(1):1. doi: 10.1186/1750-2187-9-1.
- Desensitization is a physiological feedback mechanism that blocks detrimental effects of persistent stimulation. G protein-coupled receptor kinase 2 (GRK2) was originally identified as the kinase that mediates G protein-coupled receptor (GPCR) desensitization. Subsequent studies revealed that GRK is
- PMID 24597858
Japanese Journal
- ヒト過活動膀胱におけるムスカリンレセプター(M1,M2,M3)およびG蛋白質共役型受容体リン酸化酵素(GRK2,GRK3,GRK4)の発現量の変化
- 古谷 泰久,神家満 学,座光寺 秀典,滝花 義男,荒木 勇雄,田邉 信明,武田 正之
- 日本泌尿器科學會雜誌 94(2), 396, 2003-02-15
- NAID 110003072605
- Myocardial overexpression of GRK3 in transgenic mice : evidence for in vivo selectivity of GRKs
- G protein-coupled receptor kinase 3 (GRK3) gene disruption leads to loss of odorant receptor desensitization
Related Links
- PsychEducation.org (home) GRK3 and CRF The following passage is lifted from a newsletter produced by Janice and Demitri Papalos, in this case their recent summary of anxiety and its relationship to bipolar disorder (here's the whole ...
- 1. Psychiatr Genet. 2007 Dec;17(6):315-22. Further evidence for association of GRK3 to bipolar disorder suggests a second disease mutation. Barrett TB, Emberton JE, Nievergelt CM, Liang SG, Hauger RL, Eskin E, Schork NJ ...
- GRK3 Specifically phosphorylates the agonist-occupied form of the beta-adrenergic and closely related receptors. Belongs to the protein kinase superfamily. AGC Ser/Thr protein kinase family. GPRK subfamily. Note: This description ...
Related Pictures
★リンクテーブル★
[★]
Gタンパク質共役受容体キナーゼ3
- 関
- GRK3
[★]
- 英
- G-protein-coupled receptor kinase 3、GRK3
[★]
Gタンパク質共役受容体キナーゼ
- 関
- G-protein-coupled receptor kinase
- 関
- G protein receptor kinase
[★]
- 関
- glucocorticoid receptor