出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/07/26 16:00:50」(JST)
Diuretic | |
---|---|
Drug class | |
Use | Forced diuresis, hypertension |
ATC code | C03 |
A diuretic is any substance that promotes the production of urine. This includes forced diuresis. There are several categories of diuretics. All diuretics increase the excretion of water from bodies, although each class does so in a distinct way. Alternatively, an antidiuretic such as vasopressin, or antidiuretic hormone, is an agent or drug which reduces the excretion of water in urine.
In medicine, diuretics are used to treat heart failure, liver cirrhosis, hypertension, water poisoning, and certain kidney diseases. Some diuretics, such as acetazolamide, help to make the urine more alkaline and are helpful in increasing excretion of substances such as aspirin in cases of overdose or poisoning. Diuretics are often abused by sufferers of eating disorders, especially bulimics, in attempts at weight loss.
The antihypertensive actions of some diuretics (thiazides and loop diuretics in particular) are independent of their diuretic effect.[citation needed] That is, the reduction in blood pressure is not due to decreased blood volume resulting from increased urine production, but occurs through other mechanisms and at lower doses than that required to produce diuresis. Indapamide was specifically designed with this in mind, and has a larger therapeutic window for hypertension (without pronounced diuresis) than most other diuretics.
High ceiling diuretics may cause a substantial diuresis – up to 20%[1] of the filtered load of NaCl (salt) and water. This is large in comparison to normal renal sodium reabsorption which leaves only about 0.4% of filtered sodium in the urine. Loop diuretics have this ability, and are therefore often synonymous with high ceiling diuretics. Loop diuretics, such as furosemide, inhibit the body's ability to reabsorb sodium at the ascending loop in the nephron, which leads to an excretion of water in the urine, whereas water normally follows sodium back into the extracellular fluid. Other examples of high ceiling loop diuretics include ethacrynic acid and torsemide.
Thiazide-type diuretics such as hydrochlorothiazide act on the distal convoluted tubule and inhibit the sodium-chloride symporter leading to a retention of water in the urine, as water normally follows penetrating solutes. Frequent urination is due to the increased loss of water that has not been retained from the body as a result of a concomitant relationship with sodium loss from the convoluted tubule. The long-term anti-hypertensive action is based on the fact that thiazides decrease preload, decreasing blood pressure. On the other hand the short-term effect is due to an unknown vasodilator effect that decreases blood pressure by decreasing resistance.
Carbonic anhydrase inhibitors inhibit the enzyme carbonic anhydrase which is found in the proximal convoluted tubule. This results in several effects including bicarbonate accumulation in the urine and decreased sodium absorption. Drugs in this class include acetazolamide and methazolamide.
These are diuretics which do not promote the secretion of potassium into the urine; thus, potassium is retained and not lost as much as with other diuretics. The term "potassium-sparing" refers to an effect rather than a mechanism or location; nonetheless, the term almost always refers to two specific classes that have their effect at similar locations:
The term "calcium-sparing diuretic" is sometimes used to identify agents that result in a relatively low rate of excretion of calcium.[2]
The reduced concentration of calcium in the urine can lead to an increased rate of calcium in serum. The sparing effect on calcium can be beneficial in hypocalcemia, or unwanted in hypercalcemia.
The thiazides and potassium-sparing diuretics are considered to be calcium-sparing diuretics.[3]
By contrast, loop diuretics promote a significant increase in calcium excretion.[5] This can increase risk of reduced bone density.[6]
Osmotic diuretics (e.g. mannitol) are substances that increase osmolality but have limited tubular epithelial cell permeability. They work primarily by expanding extracellular fluid and plasma volume, therefore increasing blood flow to the kidney, particularly the peritubular capillaries. This reduces medullary osmolality and thus impairs the concentration of urine in the loop of Henle (which usually uses the high osmotic and solute gradient to transport solutes and water). Furthermore, the limited tubular epithelial cell permeability increases osmolality and thus water retention in the filtrate.[7]
It was previously believed that the primary mechanism of osmotic diuretics such as mannitol is that they are filtered in the glomerulus, but cannot be reabsorbed. Thus their presence leads to an increase in the osmolarity of the filtrate and to maintain osmotic balance, water is retained in the urine.
Glucose, like mannitol, is a sugar that can behave as an osmotic diuretic. Unlike mannitol, glucose is commonly found in the blood. However, in certain conditions, such as diabetes mellitus, the concentration of glucose in the blood (hyperglycemia) exceeds the maximum reabsorption capacity of the kidney. When this happens, glucose remains in the filtrate, leading to the osmotic retention of water in the urine. Glucosuria causes a loss of hypotonic water and Na+, leading to a hypertonic state with signs of volume depletion, such as dry mucosa, hypotension, tachycardia, and decreased turgor of the skin. Use of some drugs, especially stimulants, may also increase blood glucose and thus increase urination.
The term "low ceiling diuretic" is used to indicate a diuretic has a rapidly flattening dose effect curve (in contrast to "high ceiling", where the relationship is close to linear). It refers to a pharmacological profile, not a chemical structure. However, certain classes of diuretic tae usually fall into this category, such as the thiazides.[8]
Diuretics are tools of considerable therapeutic importance. First, they effectively reduce blood pressure. Loop and thiazide diuretics are secreted from the proximal tubule via the organic anion transporter-1 and exert their diuretic action by binding to the Na(+)-K(+)-2Cl(-) co-transporter type 2 in the thick ascending limb and the Na(+)-Cl(-) co-transporter in the distal convoluted tubule, respectively.[9] Classification of common diuretics and their mechanisms of action.
Examples | Mechanism | Location (numbered in distance along nephron) | |||||
---|---|---|---|---|---|---|---|
– | ethanol, water | Inhibits vasopressin secretion | Acidifying salts | CaCl2, NH4Cl | 1. | ||
Arginine vasopressin receptor 2 antagonists |
amphotericin B, lithium citrate | Inhibits vasopressin's action | 5. collecting duct | ||||
Aquaretics | Goldenrod[citation needed], Juniper[citation needed] | Increases blood flow in kidneys[citation needed] | 1.[citation needed] | ||||
Na-H exchanger antagonists | dopamine[10] | Promotes Na+ excretion | 2. proximal tubule[10] | ||||
Carbonic anhydrase inhibitors | acetazolamide,[10] dorzolamide | Inhibits H+ secretion, resultant promotion of Na+ and K+ excretion | 2: proximal tubule | ||||
Loop diuretics | bumetanide,[10] ethacrynic acid,[10] furosemide,[10] torsemide | Inhibits the Na-K-2Cl symporter | 3. medullary thick ascending limb | ||||
Osmotic diuretics | glucose (especially in uncontrolled diabetes), mannitol | Promotes osmotic diuresis | 2. proximal tubule, descending limb | ||||
Potassium-sparing diuretics | amiloride, spironolactone, eplerenone, triamterene, potassium canrenoate. | Inhibition of Na+/K+ exchanger: Spironolactone inhibits aldosterone action, Amiloride inhibits epithelial sodium channels[10] | 5. cortical collecting ducts | ||||
Thiazides | bendroflumethiazide, hydrochlorothiazide | Inhibits reabsorption by Na+/Cl− symporter | 4. distal convoluted tubules | ||||
Xanthines | caffeine, theophylline, theobromine | Inhibits reabsorption of Na+, increase glomerular filtration rate | 1. tubules |
Chemically, diuretics are a diverse group of compounds that either stimulate or inhibit various hormones that naturally occur in the body to regulate urine production by the kidneys.
As a diuretic is any substance that promotes the production of urine, aquaretics that cause the excretion of free water are a sub-class. This includes all the hypotonic aqueous preparations, including pure water, black and green teas, and teas prepared from Herbal medications. Any given herbal medication will include a vast range of plant-derived compounds, some of which will be active drugs that may also have independent diuretic action.
The main adverse effects of diuretics are hypovolemia, hypokalemia, hyperkalemia, hyponatremia, metabolic alkalosis, metabolic acidosis, and hyperuricemia.[10]
Adverse effect | Diuretics | Symptoms |
---|---|---|
Hypovolemia |
|
|
hypokalemia |
|
|
Hyperkalemia |
|
|
hyponatremia |
|
|
metabolic alkalosis |
|
|
metabolic acidosis |
|
|
hypercalcemia |
|
|
hyperuricemia |
|
|
A common application of diuretics is for the purposes of invalidating drug test.[11] Diuretics increase the urine volume and dilute doping agents and their metabolites. The other use would be to rapidly lose weight to meet a weight category in sports like boxing, wrestling and others.[12][13]
|
|
|
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「100Cases 27」「利尿薬」「100Cases 16」「diuretic drug」「diuretic agent」 |
関連記事 | 「diuretic」 |
CATIONS | ANIONS | 尿酸 | 腎血液動態 | |||||||||||||
Na+ | K+ | H+ | Ca2+ | Mg2+ | Cl- | HCO3- | H2PO4- | 急性 | 慢性 | RBF | GFR | FF | TGF | |||
炭酸脱水酵素阻害薬 | 炭酸脱水酵素阻害 | 近位尿細管 |
+ | ++ | - | NC | V | (+) | ++ | ++ | I | - | - | - | NC | + |
浸透圧利尿薬 | 浸透圧 | ヘンレループ |
++ | + | I | + | ++ | + | + | + | + | I | + | NC | - | I |
ループ利尿薬 | Na+-K+-2Cl- symport阻害 | 太い上行脚 |
++ | ++ | + | ++ | ++ | ++ | +(1) | +(1) | + | - | V(+) | NC | V(-) | - |
チアジド系利尿薬 | Na+-Cl-symport阻害 | 遠位尿細管 |
+ | ++ | + | V(-) | V(+) | + | +(1) | +(1) | + | - | NC | V(-) | V(-) | NC |
カリウム保持性利尿薬 | 上皮性ナトリウムチャネル阻害 | 遠位尿細管後部と集合管 |
+ | - | - | - | - | + | (+) | NC | I | - | NC | NC | NC | NC |
アルドステロン受容体拮抗 | 遠位尿細管後部と集合管 |
+ | - | - | I | - | + | (+) | I | I | - | NC | NC | NC | NC |
.