出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2016/02/21 13:17:13」(JST)
|
|||
Names | |||
---|---|---|---|
IUPAC name
D-Xylose
|
|||
Other names
(+)-Xylose
Wood sugar |
|||
Identifiers | |||
CAS Number
|
58-86-6 Y 609-06-3 (L-isomer) Y[ESIS] |
||
ChEMBL | ChEMBL502135 N | ||
ChemSpider | 119104 N | ||
EC Number | 200-400-7 | ||
Jmol interactive 3D | Image | ||
PubChem | 135191 | ||
UNII | A1TA934AKO Y | ||
InChI
|
|||
SMILES
|
|||
Properties[1][2] | |||
Chemical formula
|
C5H10O5 | ||
Molar mass | 150.13 g/mol | ||
Appearance | monoclinic needles or prisms, colourless | ||
Density | 1.525 g/cm3 (20 °C) | ||
Melting point | 144 to 145 °C (291 to 293 °F; 417 to 418 K) | ||
Chiral rotation ([α]D)
|
+22.5° (CHCl3) | ||
Hazards | |||
NFPA 704 |
1
1
0
|
||
Related compounds | |||
Related aldopentoses
|
Arabinose Ribose |
||
Related compounds
|
Xylulose | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|||
N verify (what is YN ?) | |||
Infobox references | |||
Xylose (cf. Greek ξύλον, xylon, "wood") is a sugar first isolated from wood, and named for it. Xylose is classified as a monosaccharide of the aldopentose type, which means that it contains five carbon atoms and includes a formyl functional group. It is derived from hemicellulose, one of the main constituents of biomass. Like most sugars, it can adopt several structures depending on conditions. With its free carbonyl group, it is a reducing sugar.
The acyclic form of xylose has chemical formula HOCH2(CH(OH))3CHO. The cyclic hemiacetal isomers are more prevalent in solution and are of two types: the pyranoses, which feature six-membered C5O rings, and the furanoses, which feature five-membered C4O rings (with a pendant CH2OH group). Each of these rings subject to further isomerism, depending on the relative orientation of the anomeric hydroxy group.
Xylose is the main building block for the hemicellulose xylan, which comprises about 30% of some plants (birch for example), far less in others (spruce and pine have about 9% xylan). Xylose is otherwise pervasive, being found in the embryos of most edible plants. It was first isolated from wood by Finnish scientist, Koch, in 1881,[3] but first became commercially viable, with a price close to sucrose, in 1930.[4]
Xylose is also the first saccharide added to the serine or threonine in the proteoglycan type O-glycosylation, and, so, it is the first saccharide in biosynthetic pathways of most anionic polysaccharides such as heparan sulfate and chondroitin sulfate.[5]
The acid-catalysed degradation of hemicellulose gives furfural,[6] a specialty solvent in industry and a precursor to synthetic polymers.[7]
Xylose is metabolised by humans, though it is not a major human nutrient and largely excreted by the kidneys.[8] Humans must obtain xylose from their diet. An oxido-reductase pathway is present in eukaryotic microorganisms. Humans have an enzyme called xylosyltransferase, which transfers xylose from UDP to a serine in the core protein of proteoglycans.[citation needed]
Xylose contains 0 calories per gram.[9]
In animal medicine, xylose is used to test for malabsorption by administration in water to the patient after fasting. If xylose is detected in blood and/or urine within the next few hours, it has been absorbed by the intestines.[10]
High xylose intake on the order of approximately 100g/kg of animal body weight is relatively well tolerated in pigs, and in a similar manner to results from human studies, a portion of the xylose intake is passed out in urine undigested.[11]
In 2014 a low-temperature 50 °C (122 °F), atmospheric-pressure enzyme-driven process to convert xylose into hydrogen with nearly 100% of the theoretical yield was announced. The process employs 13 enzymes, including a novel polyphosphate xylulokinase (XK).[12][13]
Reduction of xylose by catalytic hydrogenation produces the sugar substitute xylitol.
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「キシロース」 |
拡張検索 | 「D-xylose」 |
.