- 関
- third-order
WordNet
- from 63 million to 2 million years ago (同)Tertiary_period
PrepTutorEJDIC
- (地質時代の)第三紀の / 《t-》第3[位]の / (地質時代の)第三紀
Wikipedia preview
出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2013/04/02 17:40:34」(JST)
[Wiki en表示]
This article is about the geological term. For other uses, see Tertiary (disambiguation).
Events of the Cenozoic
view • discuss • edit
-65 —
–
-60 —
–
-55 —
–
-50 —
–
-45 —
–
-40 —
–
-35 —
–
-30 —
–
-25 —
–
-20 —
–
-15 —
–
-10 —
–
-5 —
–
0 —
←
N. Amer. prairie expands[1]
←
First Antarctic permanent ice-sheets[2]
←
Messinian salinity crisis[3]
←
Holocene begins 11.5 ka ago
Cenozoic
Mesozoic
An approximate timescale of key Cenozoic events.
Axis scale: Ma before present.
Tertiary is an officially deprecated but still widely used term for a geologic period from 65 million to 2.6 million years ago, a time span that lies between the superseded Secondary period and the Quaternary. The Tertiary is no longer recognized as a formal unit by the International Commission on Stratigraphy,[4] its traditional span being divided between the Paleogene and Neogene Periods of the Cenozoic Era.
The period began with the demise of the non-avian dinosaurs in the Cretaceous–Paleogene extinction event, at the start of the Cenozoic Era, spanning to the beginning of the most recent ice age at the end of the Pliocene Epoch. The Tertiary also included the early Pleistocene.
Contents
- 1 Historical use of the term
- 2 Geological events
- 3 Climate
- 4 References
|
Historical use of the term
The term Tertiary was first used by Giovanni Arduino during the mid-18th century. He classified geologic time into primitive (or primary), secondary, and tertiary periods based on observations of geology in northern Italy.[5] Later a fourth period, the Quaternary, was applied. In the early development of the study of geology, the periods were thought to correspond to the Biblical narrative, the rocks of the Tertiary being thought to be associated with the Great Flood.[6] In 1828, Charles Lyell incorporated a Tertiary Period into his own, far more detailed system of classification. He subdivided the Tertiary Period into four epochs according to the percentage of fossil mollusks resembling modern species found in those strata. He used Greek names: Eocene, Miocene, Older Pliocene and Newer Pliocene. Although these divisions seemed adequate for the region to which the designations were originally applied (parts of the Alps and plains of Italy), when the same system was later extended to other parts of Europe and to America, it proved to be inapplicable. Therefore, the use of mollusks was abandoned from the definition and the epochs were renamed and redefined.
Geological events
Tectonic activity continued as Gondwana finally split completely apart, and India collided with the Eurasian plate. South America was connected to North America toward the end of the Tertiary. Antarctica — which was already separate — drifted to its current position over the South Pole. Widespread volcanic activity was prevalent.
Climate
Climates during the Tertiary slowly cooled, starting off in the Paleocene with tropical-to-moderate worldwide temperatures and ending before the first extensive glaciation at the start of the Quaternary.
References
- ^ Retallack, G.J. (1997). "Neogene Expansion of the North American Prairie". PALAIOS 12 (4): 380–390. doi:10.2307/3515337. JSTOR 3515337.
- ^ Zachos, J.C.; Kump, L.R. (2005). "Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene". Global and Planetary Change 47 (1): 51–66. Bibcode:2005GPC....47...51Z. doi:10.1016/j.gloplacha.2005.01.001.
- ^ Krijgsman, W.; Garcés, M.; Langereis, C.G.; Daams, R.; Van Dam, J.; Van Der Meulen, A.J.; Agustí, J.; Cabrera, L. (1996). "A new chronology for the middle to late Miocene continental record in Spain". Earth and Planetary Science Letters 142 (3-4): 367–380. Bibcode:1996E&PSL.142..367K. doi:10.1016/0012-821X(96)00109-4.
- ^ International Stratigraphic Chart[dead link]
- ^ Carl O. Dunbar, Historical Geology, 2nd ed. (1964), John Wiley & Sons, New York, p. 352
- ^ Rudwick, M.J.S (1992): Scenes from Deep Time: Early Pictorial Representations of the Prehistoric World, University of Chicago Press, 280 pages. Except from Google Books
Neogene Period |
Miocene |
Pliocene |
Aquitanian |Burdigalian
Langhian | Serravallian
Tortonian | Messinian |
Zanclean | Piacenzian |
Geologic history of Earth
|
|
Precambrian supereon (4.57 Gya – 541 Mya)
|
|
In left column are eons; right column: bold are eras; not bold are periods:
|
|
Hadean
(4.57 – 4 Gya) |
Paleohadean (4.5 - 4.3 Gya)
Mesohadean (4.3 - 4.1 Gya)
Neohadean (4.1 - 4 Gya)
|
|
Archean
(4 – 2.5 Gya) |
Eoarchean (4 – 3.6 Gya)
Paleoarchean (3.6 – 3.2 Gya)
Mesoarchean (3.2 – 2.8 Gya)
Neoarchean (2.8 – 2.5 Gya)
|
|
Proterozoic
(2.5 Gya – 541 Mya) |
Paleoproterozoic (2.5 – 1.6 Gya): Siderian (2.5 – 2.3 Gya) · Rhyacian (2.3 – 2.05 Gya) · Orosirian (2.05 – 1.8 Gya) · Statherian (1.8 – 1.6 Gya)
Mesoproterozoic (1.6 – 1 Gya): Calymmian (1.6 – 1.4 Gya) · Ectasian (1.4 – 1.2 Gya) · Stenian (1.2 – 1 Gya)
Neoproterozoic (1 Gya – 541 Mya): Tonian (1 Gya – 850 Mya) · Cryogenian (850 – 635 Mya) · Ediacaran (635 – 541 Mya)
|
|
Mya = millions years ago. Gya = billions years ago.
|
|
|
|
Phanerozoic eon (541.0 – 0 Mya)
|
|
In horizontal bars are eras; in left column are periods; right column: bold are epochs; not bold not italic are ages; italic are chrons:
|
|
Paleozoic (541.0 – 252.2 Mya)
|
|
Cambrian
(541.0 – 485.4 Mya)
|
Terreneuvian (541.0 – 521 Mya): Fortunian (541.0 – 529 Mya) · Age 2* (529 – 521 Mya)
Epoch 2* (521 – 509 Mya): Age 3* (521 – 514 Mya) · Age 4* (514 – 509 Mya)
Epoch 3* (509 – 497 Mya): Age 5* (509 – 504.5 Mya) · Drumian (504.5 – 500.5 Mya) · Guzhangian (500.5 – 497 Mya)
Furongian (497 – 485.4 Mya): Paibian (497 – 494 Mya) · Jiangshanian (494 – 489.5 Mya) · Age 10* (489.5 – 485.4 Mya)
|
|
Ordovician
(485.4 – 443.4 Mya)
|
Early Ordovician (485.4 – 470.0 Mya): Tremadocian (485.4 – 477.7 Mya) · Floian (477.7 – 470.0 Mya)
Middle Ordovician (470.0 – 458.4 Mya): Dapingian (470.0 – 467.3 Mya) · Darriwilian (467.3 – 458.4 Mya)
Late Ordovician (458.4 – 443.4 Mya): Sandbian (458.4 – 453.0 Mya) · Katian (453.0 – 445.2 Mya) · Hirnantian (445.2 – 443.4 Mya)
|
|
Silurian
(443.4 – 419.2 Mya)
|
Llandovery (443.4 – 433.4 Mya): Rhuddanian (443.4 – 440.8 Mya) · Aeronian (440.8 – 438.5 Mya) · Telychian (438.5 – 433.4 Mya)
Wenlock (433.4 – 427.4 Mya): Sheinwoodian (433.4 – 430.5 Mya) · Homerian (430.5 – 427.4 Mya)
Ludlow (427.4 – 423.0 Mya): Gorstian (427.4 – 425.6 Mya) · Ludfordian (425.6 – 423.0 Mya)
Pridoli (423.0 – 419.2 Mya)
|
|
Devonian
(419.2 – 358.9 Mya)
|
Early Devonian (419.2 – 393.3 Mya): Lochkovian (419.2 – 410.8 Mya) · Pragian (410.8 – 407.6 Mya) · Emsian (407.6 – 393.3 Mya)
Middle Devonian (393.3 – 382.7 Mya): Eifelian (393.3 – 387.7 Mya) · Givetian (387.7 – 382.7 Mya)
Late Devonian (382.7 – 358.9 Mya): Frasnian (382.7 – 372.2 Mya) · Famennian (372.2 – 358.9 Mya)
|
|
Carboniferous
(358.9 – 298.9 Mya)
|
Mississippian (358.9 – 323.2 Mya): Tournaisian / Early Mississippian (358.9 – 346.7 Mya) · Viséan / Middle Mississippian (346.7 – 330.9 Mya) · Serpukhovian / Late Mississippian (330.9 – 323.2 Mya)
Pennsylvanian (323.2 – 298.9 Mya): Bashkirian / Early Pennsylvanian (323.2 – 315.2 Mya) · Moscovian / Middle Pennsylvanian (315.2 – 307.0 Mya) · Late Pennsylvanian (307.0 – 298.9 Mya): Kasimovian (307.0 – 303.7 Mya) · Gzhelian (303.7 – 298.9 Mya)
|
|
Permian
(298.9 – 252.2 Mya)
|
Cisuralian (298.9 – 272.3 Mya): Asselian (298.9 – 295.5 Mya) · Sakmarian (295.5 – 290.1 Mya) · Artinskian (290.1 – 279.3 Mya) · Kungurian (279.3 – 272.3 Mya)
Guadalupian (272.3 – 259.9 Mya): Roadian (272.3 – 268.8 Mya) · Wordian (268.8 – 265.1 Mya) · Capitanian (265.1 – 259.9 Mya)
Lopingian (259.9 – 252.2 Mya): Wuchiapingian (259.9 – 254.2 Mya) · Changhsingian (254.2 – 252.2 Mya)
|
|
|
|
Mesozoic (252.2 – 66.0 Mya)
|
|
Triassic
(252.2 – 201.3 Mya)
|
Early Triassic (252.2 – 247.2 Mya): Induan (252.2 – 251.2 Mya) · Olenekian (251.2 – 247.2 Mya)
Middle Triassic (247.2 – 235 Mya): Anisian (247.2 – 242 Mya) · Ladinian (242 – 235 Mya)
Late Triassic (235 – 201.3 Mya): Carnian (235 – 228 Mya) · Norian (228 – 208.5 Mya) · Rhaetian (208.5 – 201.3 Mya)
|
|
Jurassic
(201.3 – 145.0 Mya)
|
Early Jurassic (201.3 – 174.1 Mya): Hettangian (201.3 – 199.3 Mya) · Sinemurian (199.3 – 190.8 Mya) · Pliensbachian (190.8 – 182.7 Mya) · Toarcian (182.7 – 174.1 Mya)
Middle Jurassic (174.1 – 163.5 Mya): Aalenian (174.1 – 170.3 Mya) · Bajocian (170.3 – 168.3 Mya) · Bathonian (168.3 – 166.1 Mya) · Callovian (166.1 – 163.5 Mya)
Late Jurassic (163.5 – 145.0 Mya): Oxfordian (163.5 – 157.3 Mya) · Kimmeridgian (157.3 – 152.1 Mya) · Tithonian (152.1 – 145.0 Mya)
|
|
Cretaceous
(145.0 – 66.0 Mya)
|
Early Cretaceous (145.0 – 100.5 Mya): Berriasian (145.0 – 139.8 Mya) · Valanginian (139.8 – 132.9 Mya) · Hauterivian (132.9 – 129.4 Mya) · Barremian (129.4 – 125.0 Mya) · Aptian (125.0 – 113.0 Mya) · Albian (113.0 – 100.5 Mya)
Late Cretaceous (100.5 – 66.0 Mya): Cenomanian (100.5 – 93.9 Mya) · Turonian (93.9 – 89.8 Mya) · Coniacian (89.8 – 86.3 Mya) · Santonian (86.3 – 83.6 Mya) · Campanian (83.6 – 72.1 Mya) · Maastrichtian (72.1 – 66.0 Mya)
|
|
|
|
Cenozoic (66.0 – 0 Mya)
|
|
Paleogene, Neogene and early Pleistocene comprise former Tertiary* (66.0 – 1.8 Mya) period. Gelasian and Calabrian comprise Early Pleistocene (2.588 Mya – 781 kya) subepoch.
|
|
Paleogene
(66.0 – 23.03 Mya)
|
Paleocene (66.0 – 56.0 Mya): Danian (66.0 – 61.6 Mya) · Selandian (61.6 – 59.2 Mya) · Thanetian (59.2 – 56.0 Mya)
Eocene (56.0 – 33.9 Mya): Ypresian (56.0 – 47.8 Mya) · Lutetian (47.8 – 41.3 Mya) · Bartonian (41.3 – 38.0 Mya) · Priabonian (38.0 – 33.9 Mya)
Oligocene (33.9 – 23.03 Mya): Rupelian (33.9 – 28.1 Mya) · Chattian (28.1 – 23.03 Mya)
|
|
Neogene
(23.03 – 2.588 Mya)
|
Miocene (23.03 – 5.333 Mya): Aquitanian (23.03 – 20.44 Mya) · Burdigalian (20.44 – 15.97 Mya) · Langhian (15.97 – 13.82 Mya) · Serravallian (13.82 – 11.62 Mya) · Tortonian (11.62 – 7.246 Mya) · Messinian (7.246 – 5.333 Mya)
Pliocene (5.333 – 2.588 Mya): Piacenzian (5.333 – 3.600 Mya) · Zanclean (3.600 – 2.588 Mya)
|
|
Quaternary
(2.588 – 0 Mya)
|
Pleistocene (2.588 Mya – 11.7 kya): Gelasian (2.588 – 1.806 Mya) · Calabrian (1.806 Mya – 781 kya) · Middle Pleistocene / Ionian (781 – 126 kya) · Late Pleistocene / Tarantian (126 – 11.7 kya): Oldest Dryas* (18 – 14.67 kya) · Bølling* (14.67 – 14 kya) · Older Dryas* (14 – 13.7 kya) · Allerød* (13.7 – 12.8 kya) · Younger Dryas* (12.8 – 11.7 kya)
Holocene (11.7 – 0 kya): Preboreal* (11.7 – 9 kya) · Boreal* (9 – 8 kya) · Atlantic* (8 – 5 kya) · Subboreal* (5 – 2.5 kya) · Subatlantic* (2.5 – 0 kya)
|
|
|
|
kya = thousands years ago. Mya = millions years ago. * Not officially recognized by the I.C.S.
|
|
|
|
Source: International Chronostratigraphic Chart (January 2013). International Commission on Stratigraphy. Retrieved 27 March 2013. Divisions of Geologic Time—Major Chronostratigraphic and Geochronologic Units USGS Retrieved 10 March 2013.
|
|
UpToDate Contents
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
English Journal
- Evaluation of headache service quality indicators: pilot implementation in two specialist-care centres.
- Katsarava Z1, Gouveia RG, Jensen R, Gaul C, Schramm S, Schoppe A, Steiner TJ.
- The journal of headache and pain.J Headache Pain.2015 Dec;16(1):537. doi: 10.1186/s10194-015-0537-1. Epub 2015 Jun 9.
- BACKGROUND: Evaluating quality of health care is increasingly recognized as an important contributor to the advancement of health-care delivery. We recently developed a set of quality indicators for headache care, intended to be applicable across countries, cultures and settings so that deficiencies
- PMID 26059349
- Cost of Chronic and Episodic Migraine. A pilot study from a tertiary headache centre in northern Italy.
- Berra E1, Sances G, De Icco R, Avenali M, Berlangieri M, De Paoli I, Bolla M, Allena M, Ghiotto N, Guaschino E, Cristina S, Tassorelli C, Sandrini G, Nappi G.
- The journal of headache and pain.J Headache Pain.2015 Dec;16(1):532. doi: 10.1186/s10194-015-0532-6. Epub 2015 May 27.
- BACKGROUND: Chronic migraine (CM) has a high impact on functional performance and quality of life (QoL). CM also has a relevant burden on the National Health Service (NHS), however precise figures are lacking. In this pilot study we compared the impact in terms of costs of CM and episodic migraine (
- PMID 26018292
- Effect of high pressure - low temperature treatments on structural characteristics of whey proteins and micellar caseins.
- Baier D1, Purschke B2, Schmitt C3, Rawel HM4, Knorr D2.
- Food chemistry.Food Chem.2015 Nov 15;187:354-63. doi: 10.1016/j.foodchem.2015.04.049. Epub 2015 Apr 21.
- In this study, structural changes in micellar caseins and whey proteins due to high pressure - low temperature treatments (HPLT) were investigated and compared to changes caused by high pressure treatments at room temperature. Whey protein isolate (WPI) solutions as well as micellar casein (MC) disp
- PMID 25977037
Japanese Journal
- 障害保健福祉政策の推進に向けた外傷予後の協働データベース・プロジェクトに関する意見調査
- A Proposal for an Online Tool to Encourage the Professional Development of EIL Teachers in Japan
- 文教大学国際学部紀要 = Journal of the Faculty of International Studies, Bunkyo University 26(2), 1-40, 2016-01
- NAID 120005703158
- Another description of quasi tertiary composition
Related Links
- tertiaryとは。意味や和訳。[形]1 第三(次,位,期)の. ⇒PRIMARY, SECONDARY2 《化学》第三(級)の.3 《鳥類》=tertial.4 ((T-))《地質》第三紀の. [名]1 《鳥類》=tertial.2 ((the T-))《地質》第三紀,第三系.3 ((しばしば ...
- (tûr'shē-ěr'ē) Noun Tertiary. The first period of the Cenozoic Era, from about 65 to 2 million years ago. During this time the continents took on their present form, and the climate changed from being warmer and wetter, in the early ...
Related Pictures
★リンクテーブル★
[★]
- 英
- tertiary、third-order
- 関
- 三級、第三級
[★]
- 英
- tertiary
- 関
- 三次、第三級
[★]
- 英
- tertiary
- 関
- 三級、三次
[★]
- 関
- tertiary
[★]
第三期梅毒