- 関
- growth hormone receptor
WordNet
- a cellular structure that is postulated to exist in order to mediate between a chemical agent that acts on nervous tissue and the physiological response
- a hormone produced by the anterior pituitary gland; promotes growth in humans (同)somatotrophin, somatotropic_hormone, somatotrophic_hormone, STH, human_growth_hormone, growth_hormone
PrepTutorEJDIC
- =sense organ / 受信装置
Wikipedia preview
出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/03/19 16:09:06」(JST)
[Wiki en表示]
Growth hormone receptor |
PDB rendering based on 1a22. |
Available structures |
PDB |
Ortholog search: PDBe, RCSB |
List of PDB id codes |
1A22, 1AXI, 1HWG, 1HWH, 1KF9, 2AEW, 3HHR
|
|
|
Identifiers |
Symbols |
GHR ; GHBP |
External IDs |
OMIM: 600946 MGI: 95708 HomoloGene: 134 ChEMBL: 1976 GeneCards: GHR Gene |
Gene ontology |
Molecular function |
• growth hormone receptor activity
• protein binding
• peptide hormone binding
• growth factor binding
• protein kinase binding
• protein phosphatase binding
• SH2 domain binding
• protein homodimerization activity
• proline-rich region binding
|
Cellular component |
• extracellular region
• extracellular space
• nucleus
• mitochondrion
• plasma membrane
• integral component of plasma membrane
• cell surface
• integral component of membrane
• extrinsic component of membrane
• neuronal cell body
• receptor complex
• growth hormone receptor complex
|
Biological process |
• activation of MAPK activity
• allantoin metabolic process
• citrate metabolic process
• 2-oxoglutarate metabolic process
• succinate metabolic process
• oxaloacetate metabolic process
• isoleucine metabolic process
• valine metabolic process
• creatine metabolic process
• fatty acid metabolic process
• endocytosis
• JAK-STAT cascade
• hormone-mediated signaling pathway
• cytokine-mediated signaling pathway
• taurine metabolic process
• receptor internalization
• response to food
• response to estradiol
• cellular response to insulin stimulus
• cellular response to hormone stimulus
• regulation of multicellular organism growth
• positive regulation of multicellular organism growth
• positive regulation of tyrosine phosphorylation of Stat3 protein
• positive regulation of tyrosine phosphorylation of Stat5 protein
• activation of JAK2 kinase activity
• response to morphine
• multicellular organismal metabolic process
• positive regulation of cell differentiation
• creatinine metabolic process
• response to cycloheximide
• insulin-like growth factor receptor signaling pathway
• positive regulation of peptidyl-tyrosine phosphorylation
• response to glucocorticoid
• cartilage development involved in endochondral bone morphogenesis
• growth hormone receptor signaling pathway
• JAK-STAT cascade involved in growth hormone signaling pathway
• response to interleukin-1
• negative regulation of neuron death
|
Sources: Amigo / QuickGO |
|
RNA expression pattern |
|
More reference expression data |
Orthologs |
Species |
Human |
Mouse |
|
Entrez |
2690 |
14600 |
|
Ensembl |
ENSG00000112964 |
ENSMUSG00000055737 |
|
UniProt |
P10912 |
P16882 |
|
RefSeq (mRNA) |
NM_000163 |
NM_001048147 |
|
RefSeq (protein) |
NP_000154 |
NP_001041643 |
|
Location (UCSC) |
Chr 5:
42.42 – 42.72 Mb |
Chr 15:
3.32 – 3.58 Mb |
|
PubMed search |
[1] |
[2] |
|
|
Growth hormone receptor is a protein that in humans is encoded by the GHR gene.[1] GHR orthologs [2] have been identified in most mammals.
This gene encodes a protein that is a transmembrane receptor for growth hormone. Binding of growth hormone to the receptor leads to receptor dimerization (the receptor may however also exist as a pre-assembled non-functional dimer [3]) and the activation of an intra- and intercellular signal transduction pathway leading to growth. A common alternate allele of this gene, called GHRd3, lacks exon three and has been well-characterized. Mutations in this gene have been associated with Laron syndrome, also known as the growth hormone insensitivity syndrome (GHIS), a disorder characterized by short stature (proportional dwarfism). Other splice variants, including one encoding a soluble form of the protein (GHRtr), have been observed but have not been thoroughly characterized.[1] Laron mice (that is mice genetically engineered to carry defective Ghr), have a dramatic reduction in body mass (only reaching 50% of the weight of normal siblings), and also show a ~40% increase in lifespan.
Contents
- 1 Interactions
- 2 Evolution
- 3 Antagonists
- 4 References
- 5 External links
Interactions
Growth hormone receptor has been shown to interact with SGTA,[4] PTPN11,[5][6] Janus kinase 2,[7][8][9] Suppressor of cytokine signaling 1[10] and CISH.[10]
Evolution
The GHR gene is used in animals as a nuclear DNA phylogenetic marker.[2] The exon 10 has first been experienced to explore the phylogeny of the major groups of Rodentia.[11][12][13] GHR has also proven useful at lower taxonomic levels, e.g., in octodontoid,[14] arvicoline,[15] muroid,[16][17] murine,[18] and peromyscine [19] rodents, in arctoid [20] and felid [21] carnivores, and in dermopterans.[22] Note that the GHR intron 9 has also been used to investigate the mustelid [23] and hyaenid [24] carnivores phylogenetics.
Antagonists
Growth hormone receptor antagonists such as pegvisomant (trade name Somavert) are used in the treatment of acromegaly.[25] They are used if the tumor of the pituitary gland causing the acromegaly cannot be controlled with surgery or radiation, and the use of somatostatin analogues is unsuccessful. Pegvisomant is delivered as a powder that is mixed with water and injected under the skin.[26]
References
- ^ a b "Entrez Gene: GHR growth hormone receptor".
- ^ a b "OrthoMaM phylogenetic marker: GHR coding sequence".
- ^ Gonzalez, L., L. M. Curto, et al. (2007). "Differential regulation of membrane associated-growth hormone binding protein (MA-GHBP) and growth hormone receptor (GHR) expression by growth hormone (GH) in mouse liver." Growth Horm IGF Res 17(2): 104-112.
- ^ Schantl, Julia A; Roza Marcel; De Jong Ad P; Strous Ger J (August 2003). "Small glutamine-rich tetratricopeptide repeat-containing protein (SGT) interacts with the ubiquitin-dependent endocytosis (UbE) motif of the growth hormone receptor". Biochem. J. (England) 373 (Pt 3): 855–63. doi:10.1042/BJ20021591. ISSN 0264-6021. PMC 1223544. PMID 12735788.
- ^ Stofega, M R; Herrington J; Billestrup N; Carter-Su C (September 2000). "Mutation of the SHP-2 binding site in growth hormone (GH) receptor prolongs GH-promoted tyrosyl phosphorylation of GH receptor, JAK2, and STAT5B". Mol. Endocrinol. (UNITED STATES) 14 (9): 1338–50. doi:10.1210/me.14.9.1338. ISSN 0888-8809. PMID 10976913.
- ^ Moutoussamy, S; Renaudie F; Lago F; Kelly P A; Finidori J (June 1998). "Grb10 identified as a potential regulator of growth hormone (GH) signaling by cloning of GH receptor target proteins". J. Biol. Chem. (UNITED STATES) 273 (26): 15906–12. doi:10.1074/jbc.273.26.15906. ISSN 0021-9258. PMID 9632636.
- ^ Frank, S J; Yi W; Zhao Y; Goldsmith J F; Gilliland G; Jiang J; Sakai I; Kraft A S (June 1995). "Regions of the JAK2 tyrosine kinase required for coupling to the growth hormone receptor". J. Biol. Chem. (UNITED STATES) 270 (24): 14776–85. doi:10.1074/jbc.270.24.14776. ISSN 0021-9258. PMID 7540178.
- ^ VanderKuur, J A; Wang X; Zhang L; Campbell G S; Allevato G; Billestrup N; Norstedt G; Carter-Su C (August 1994). "Domains of the growth hormone receptor required for association and activation of JAK2 tyrosine kinase". J. Biol. Chem. (UNITED STATES) 269 (34): 21709–17. ISSN 0021-9258. PMID 8063815.
- ^ Hellgren, G; Jansson J O; Carlsson L M; Carlsson B (June 1999). "The growth hormone receptor associates with Jak1, Jak2 and Tyk2 in human liver". Growth Horm. IGF Res. (SCOTLAND) 9 (3): 212–8. doi:10.1054/ghir.1999.0111. ISSN 1096-6374. PMID 10502458.
- ^ a b Ram, P A; Waxman D J (December 1999). "SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms". J. Biol. Chem. (UNITED STATES) 274 (50): 35553–61. doi:10.1074/jbc.274.50.35553. ISSN 0021-9258. PMID 10585430.
- ^ Adkins RM, Gelke EL, Rowe D, Honeycutt RL (2001). "Molecular phylogeny and divergence time estimates for major rodent groups: evidence from multiple genes.". Mol Biol Evol 18 (5): 777–791. doi:10.1093/oxfordjournals.molbev.a003860. PMID 11319262.
- ^ Adkins R. M., Walton A. H. & Honeycutt R. L. (2003). "Higher-level systematics of rodents and divergence time estimates based on two congruent nuclear genes". Mol. Phylogenet. Evol. 26 (3): 409–420. doi:10.1016/S1055-7903(02)00304-4. PMID 12644400.
- ^ Blanga-Kanfi S., Miranda H., Penn O., Pupko T., DeBry R. W. & Huchon D. (2009). "Rodent phylogeny revised: analysis of six nuclear genes from all major rodent clades". BMC Evol. Biol. 9: 71. doi:10.1186/1471-2148-9-71. PMC 2674048. PMID 19341461.
- ^ Honeycutt R. L., Rowe D. L. & Gallardo M. H. (2003). "Molecular systematics of the South American caviomorph rodents: relationships among species and genera in the family Octodontidae". Mol. Phylogenet. Evol. 26 (3): 476–489. doi:10.1016/S1055-7903(02)00368-8. PMID 12644405.
- ^ Galewski T., Tilak M., Sanchez S., Chevret P., Paradis E. & Douzery E. J. P. (2006). "The evolutionary radiation of Arvicolinae rodents (voles and lemmings): relative contribution of nuclear and mitochondrial DNA phylogenies". BMC Evol. Biol. 6: 80. doi:10.1186/1471-2148-6-80. PMC 1618403. PMID 17029633.
- ^ Steppan S. J., Adkins R. M. & Anderson J. (2004). "Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes". Syst. Biol. 53 (4): 533–553. doi:10.1080/10635150490468701. PMID 15371245.
- ^ Rowe K. C., Reno M. L., Richmond D. M., Adkins R. M. & Steppan S. J. (2008). "Pliocene colonization and adaptive radiations in Australia and New Guinea (Sahul): multilocus systematics of the old endemic rodents (Muroidea: Murinae)". Mol. Phylogenet. Evol. 47 (1): 84–101. doi:10.1016/j.ympev.2008.01.001. PMID 18313945.
- ^ Lecompte E., Aplin K., Denys C., Catzeflis F., Chades M. & Chevret P. (2008). "Phylogeny and biogeography of African Murinae based on mitochondrial and nuclear gene sequences, with a new tribal classification of the subfamily". BMC Evol. Biol. 8: 199. doi:10.1186/1471-2148-8-199. PMC 2490707. PMID 18616808.
- ^ Miller J. R. & Engstrom M. D. (2008). "The relationships of major lineages within peromyscine rodents: a molecular phylogenetic hypothesis and systematic reappraisal". J. Mammal. 89 (5): 1279–1295. doi:10.1644/07-MAMM-A-195.1.
- ^ Fulton T. L. & Strobeck C. (2006). "Molecular phylogeny of the Arctoidea (Carnivora): effect of missing data on supertree and supermatrix analyses of multiple gene data sets". Mol. Phylogenet. Evol. 41 (1): 165–181. doi:10.1016/j.ympev.2006.05.025. PMID 16814570.
- ^ Johnson W. E., Eizirik E., Pecon-Slattery J., Murphy W. J., Antunes A., Teeling E. & O'Brien S. J. (2006). "The late Miocene radiation of modern Felidae: a genetic assessment". Science 311 (5757): 73–77. doi:10.1126/science.1122277. PMID 16400146.
- ^ Janecka J. E., Helgen K. M., Lim N. T., Baba M., Izawa M., Boeadi & Murphy W. J. (2008). "Evidence for multiple species of Sunda colugo". Curr. Biol. 18 (21): R1001–R1002. doi:10.1016/j.cub.2008.09.005. PMID 19000793.
- ^ Koepfli K. P. & Wayne R. K. (2003). "Type I STS markers are more informative than cytochrome B in phylogenetic reconstruction of the Mustelidae (Mammalia: Carnivora)". Syst. Biol. 52 (5): 571–593. doi:10.1080/10635150390235368. PMID 14530127.
- ^ Koepfli K. P., Jenks S. M., Eizirik E., Zahirpour T., Van Valkenburgh B. & Wayne R. K. (2006). "Molecular systematics of the Hyaenidae: relationships of a relictual lineage resolved by a molecular supermatrix". Mol. Phylogenet. Evol. 38 (3): 603–620. doi:10.1016/j.ympev.2005.10.017. PMID 16503281.
- ^ Schreiber, I; Buchfelder M, Droste M et al. (January 2007). "Treatment of acromegaly with the GH receptor antagonist pegvisomant in clinical practice: safety and efficacy evaluation from the German Pegvisomant Observational Study". European Journal of Endocrinology 156 (1): 75–82. doi:10.1530/eje.1.02312. PMID 17218728.
- ^ "Scientific Discussion of Somavert". European Medicines Agency. 2004.
External links
- Somatotropin receptors at the US National Library of Medicine Medical Subject Headings (MeSH)
- Illustration at nih.gov
- Overview
- Growth Hormone Receptor: Molecule of the Month by Shuchismita Dutta and David Goodsell (April 2004)
Neuropeptide receptors
|
|
G protein-coupled receptor |
Hormone receptors |
Hypothalamic |
- CRH
- FSH
- LHRH
- TRH
- Somatostatin
|
|
Pituitary |
- Vasopressin
- Oxytocin
- LHCG
- TSH
|
|
Other |
- Atrial natriuretic factor
- Calcitonin
- Cholecystokinin
- VIP
|
|
|
Opioid receptors |
- Delta
- Kappa
- Mu
- Nociceptin
|
|
Other neuropeptide receptors |
- Angiotensin
- Bradykinin
- Tachykinin
- Calcitonin gene-related peptide
- Galanin
- GPCR neuropeptide
- Neurotensin
|
|
|
Type I cytokine receptor |
|
|
Enzyme-linked receptor |
- Atrial natriuretic factor
|
|
Other |
|
|
Index of signal transduction
|
|
Description |
- Intercellular
- neuropeptides
- growth factors
- cytokines
- hormones
- Cell surface receptors
- ligand-gated
- enzyme-linked
- G protein-coupled
- immunoglobulin superfamily
- integrins
- neuropeptide
- growth factor
- cytokine
- Intracellular
- adaptor proteins
- GTP-binding
- MAP kinase
- Calcium signaling
- Lipid signaling
- Pathways
- hedgehog
- Wnt
- TGF beta
- MAPK ERK
- notch
- JAK-STAT
- apoptosis
- hippo
- TLR
|
|
|
PDB gallery
|
|
|
1a22: HUMAN GROWTH HORMONE BOUND TO SINGLE RECEPTOR
|
|
1axi: STRUCTURAL PLASTICITY AT THE HGH:HGHBP INTERFACE
|
|
1hwg: 1:2 COMPLEX OF HUMAN GROWTH HORMONE WITH ITS SOLUBLE BINDING PROTEIN
|
|
1hwh: 1:1 COMPLEX OF HUMAN GROWTH HORMONE MUTANT G120R WITH ITS SOLUBLE BINDING PROTEIN
|
|
1kf9: PHAGE DISPLAY DERIVED VARIANT OF HUMAN GROWTH HORMONE COMPLEXED WITH TWO COPIES OF THE EXTRACELLULAR DOMAIN OF ITS RECEPTOR
|
|
2aew: A model for growth hormone receptor activation based on subunit rotation within a receptor dimer
|
|
3hhr: HUMAN GROWTH HORMONE AND EXTRACELLULAR DOMAIN OF ITS RECEPTOR: CRYSTAL STRUCTURE OF THE COMPLEX
|
|
|
|
UpToDate Contents
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
English Journal
- MECHANISMS IN ENDOCRINOLOGY: Clinical and pharmacogenetic aspects of the growth hormone receptor polymorphism.
- Boguszewski CL1, Barbosa EJL2, Svensson PA3,4, Johannsson G5, Glad CAM3,5.
- European journal of endocrinology.Eur J Endocrinol.2017 Dec;177(6):R309-R321. doi: 10.1530/EJE-17-0549. Epub 2017 Sep 13.
- PMID 28904008
- Whole-exome sequencing gives additional benefits compared to candidate gene sequencing in the molecular diagnosis of children with growth hormone or IGF-1 insensitivity.
- Shapiro L1, Chatterjee S1, Ramadan DG2, Davies KM1, Savage MO1, Metherell LA1, Storr HL3.
- European journal of endocrinology.Eur J Endocrinol.2017 Dec;177(6):485-501. doi: 10.1530/EJE-17-0453. Epub 2017 Sep 4.
- PMID 28870985
- A 100-Year Review: Regulation of nutrient partitioning to support lactation.
- Baumgard LH1, Collier RJ2, Bauman DE3.
- Journal of dairy science.J Dairy Sci.2017 Dec;100(12):10353-10366. doi: 10.3168/jds.2017-13242.
- PMID 29153169
Japanese Journal
- Immunohistochemical and nucleic acid analysis of somatotropin receptor populations in the bovine ovary
Related Links
- GHR GHR A gene on chromosome 5p13-p12 that encodes growth hormone receptor, a type-I cytokine receptor which, once GH is bound, dimerizes and activates the JAK2/STAT5 transduction pathway, leading to growth. Molecular ...
- Somatotropin receptor, Growth hormone receptor, Growth hormone-binding protein, Goddard High Resolution Spectrograph, Hormone receptor, Máiréad Ní Ghráda, Ceol an Ghr á, GHR, Pegvisomant, Growth hormone 2 WHO ...
★リンクテーブル★
[★]
- 英
- somatotropin receptor
- 関
- 成長ホルモン受容体、ソマトトロピン受容体
[★]
- 英
- somatotropin receptor
- 関
- ソマトトロピンレセプター
[★]
成長ホルモン。ソマトトロピン