出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/05/14 16:09:22」(JST)
Liquid scintillation counting is the measurement of activity of a sample of radioactive material which uses the technique of mixing the active material with a liquid scintillator, and counting the resultant photon emissions. The purpose is to allow more efficient counting due to the intimate contact of the activity with the scintillator. It is generally used for alpha and beta particle detection.
Samples are dissolved or suspended in a "cocktail" containing a solvent (historically aromatic organics such as benzene or toluene, but more recently less hazardous solvents are used), typically some form of a surfactant, and small amounts of other additives known as "fluors" or scintillators. Scintillators can be divided into primary and secondary phosphors, differing in their luminescence properties.
Beta particles emitted from the isotopic sample transfer energy to the solvent molecules: the π cloud of the aromatic ring absorbs the energy of the emitted particle. The energized solvent molecules typically transfer the captured energy back and forth with other solvent molecules until the energy is finally transferred to a primary scintillator. The primary phosphor will emit photons following absorption of the transferred energy. Because that light emission may be at a wavelength that does not allow efficient detection, many cocktails contain secondary phosphors that absorb the fluorescence energy of the primary phosphor and re-emit at a longer wavelength.
The radioactive samples and cocktail are placed in small transparent or translucent (often glass or plastic) vials that are loaded into an instrument known as a liquid scintillation counter. Newer machines may use 96-well plates with individual filters in each well. Many counters have two photomultiplier tubes connected in a coincidence circuit. The coincidence circuit assures that genuine light pulses, which reach both photomultiplier tubes, are counted, while spurious pulses (due to line noise, for example), which would only affect one of the tubes, are ignored.
Counting efficiencies under ideal conditions range from about 30% for tritium (a low-energy beta emitter) to nearly 100% for phosphorus-32, a high-energy beta emitter. Some chemical compounds (notably chlorine compounds) and highly colored samples can interfere with the counting process. This interference, known as "quenching", can be overcome through data correction or through careful sample preparation.
High-energy beta emitters, such as phosphorus-32, can also be counted in a scintillation counter without the cocktail, instead using an aqueous solution. This technique, known as Cherenkov counting, relies on the Cherenkov radiation being detected directly by the photomultiplier tubes. Cherenkov counting in this experimental context is normally used for quick, rough measurements, since the geometry of the sample can create variations in the output.
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「シンチレーション測定」「scintillation counter」 |
関連記事 | 「scintillation」 |
.