出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2014/03/20 20:56:01」(JST)
「ロボット」のその他の用法については「ロボット (曖昧さ回避)」をご覧ください。 |
ロボット(robot)は、人の代わりに何等かの作業を行う装置、もしくは、「人や動物のような」機械。機械としてのロボットとは、主に以下の意味に大別される。
ロボット(robot)という語は、1920年にチェコスロバキア(当時)の小説家カレル・チャペックが発表した戯曲『R.U.R.』において初めて用いられた。ただし、この作品に登場するロボットは金属製の機械ではなく、原形質を化学的合成で似せて作った、人間とは異なる組成の肉体と人間そっくりの外見を持つもので、現在のSFで言うバイオノイドである。
robot の語源はチェコ語で「賦役」(強制労働)を意味するrobotaとされている[1]。ロボットの着想にはゴーレム伝説が影響しているとチャペックは述べており、また、「ロボット」という言葉を作ったのは自身ではなく、兄で画家のヨゼフ・チャペックであるとしている。カレルが『R.U.R.』のあらすじをヨゼフに話し、彼にどのような名前にしたらよいだろうかと聞いてみたところ、ヨゼフは口に絵筆をくわえてもごもごとした口調で「ロボット」はどうだろうかと答えたという。[2]。この『R.U.R.』が各国で翻訳・上演されたことで広まり、「ロボット」の語は一般に使用されるようになった。日本においては、1923年に『人造人間』(宇賀伊津緒訳、春秋社)として出版されており、宇賀はrobotを「人造人間」と訳している。
ロボットが何を指すのか、という明確な定義は事実上存在しない。それは、『R.U.R.』のロボットが「人の代わりに作業(労働)をさせることを目的に」、「人(の姿と自律行動)を模して」作られたものであることから、一般に広まった「ロボット」という語が、各分野において「人に代わって作業(労働)をするために作られた存在」、「人の姿を模して作られた存在」、「人の(自律)行動を模して作られた存在」のいずれかまたは複数に該当する存在に対して、それぞれ独自に用いられているためである。
ただし、特定の分野においては、定義を明確に定めている場合もある。日本工業規格(JIS)では「JIS B 0134」(1998年)により「産業用ロボット」の定義を、「自動制御によるマニピュレーション機能又は移動機能をもち,各種の作業をプログラムによって実行できる,産業に使用される機械。」と規定している。「JIS B 0134」では同時に多くの産業用マニピュレーティングロボットに関する用語を定義している。
人の代わりに作業を行う装置の場合、ある程度の工程なり手順なりを自動的かつ連続的に行う物がロボットと呼ばれ、単一の動作を行う物や、絶えず人間が操作をする必要がある装置、ブルドーザーやショベルカーなどの操縦者が搭乗する必要性があるものは基本的にロボットとは呼ばれない。その一方で、手動操作であっても、人の形をした機械装置であればロボットの範疇に含む場合もあり、パワードスーツなどを含めた「人の形をした乗り物または作業用機械」についても同様に、一般的にはロボットと呼ばれている。また、作業用機械であっても、高度な遠隔操作や自動制御技術の導入が進み、人間が操縦者から単なる作業指示・命令者に近づきつつある事から、一層境界が曖昧になって来ている。
操り人形の類は何かの作業を目的とした装置ではないし、まして自動的に動作する物でもないためロボットとは言えないが、予め設計された一連の動作を特定の操作をきっかけとして行うオートマタやからくり(からくり人形)等に、今日あるロボットの原型を見出す事ができるため、間接的にオートマタやからくり人形をロボットの一種と見なす事も可能である。同時に、モーター等の動力が内蔵され機械的または電気的に人間の操作を伝達して動作するマニピュレーターも、ロボットの一種と見なされるが、これらは厳密な定義による分類ではなく、多分に慣用句的用法である。
昨今ではコンピュータ言語によるプログラムやソフトウェアも、ロボットとして扱われることがある。またインターネットの情報を自動検索するソフトウエアもロボット検索と呼ばれる。検索を命令すると結果・情報が返されるからである。これらは物体としては存在しないが、「人の代わりになんらかの作業を、ある程度の工程なり手順なりを自動的かつ連続的に(かつ効率的に)行うもの」という定義からすれば、あながち間違いとも言えないであろう。これらは機械的ロボットとの区別のために短縮形のボット(Bot)と呼ばれることが多い(インターネットボット、ボットネットなど)。
別の用法として、ロボットの「機械的」という概念を人間にあてはめ、「自分で判断をしない、指示待ち的な人間」や「自分の意志ではなく、他人に操られて動く人間」を「ロボット」とやや侮蔑的に比喩することもある。ただし、同様の人を指して「傀儡(かいらい)」や「操り人形」という比喩はそれ以前から存在するため、新しい語をバリエーションの一つとしてあてはめたものと言える。英語においても、同様の比喩に「ロボット」を用いるが、こちらも先に「オートマトン(オートマタ、機械人形)」が比喩に用いられていた。
以下は現実世界におけるロボットの研究・開発状況について解説する。
ロボットは長い間フィクションの中だけに登場する存在であったが、主に工場などの生産ラインで腕力の必要な作業や、高温など危険な環境下での機械関係の点検・保守作業などで、自律的に人間の代行ができる機械が産業用ロボットと呼ばれ活躍している(自動車組み立てロボットなど)。
「産業用ロボット」も参照
しかしすでに一部では、歩行する人間型の物ではないが自動的に建物内を巡回・警備するロボットのレンタル開始、病院内の物資運搬におけるロボットカートの採用、また自動車の自動運転という意味のロボットカーなど、非人間型ロボットを中心に移動する自動機械が人間社会のなかに動き始めた。据え置き型の製造機械である産業用ロボットはそれらが動かない限り、ロボットと呼ばれる自動機械であり人間社会に与える影響も旧来の自動機械と同等と考えられたが、これからの人間社会は移動するロボットからの影響を受けることが想像される。
福島第一原発事故後に日本製原発ロボットの投入が遅れたことや、ロボット掃除機等の分野で日本企業が主役から外れている事などを背景に、実用性の高いロボットの研究開発の重要性が指摘されている。
詳細は「二足歩行ロボット」を参照
現在、ASIMO(本田技研工業)・HRP-2/HRP-3(川田工業・産業技術総合研究所・川崎重工業)・SDR-4X/QRIO(ソニー)・PALRO(富士ソフト)等の二足歩行可能な人型ロボットが開発・発表されており、ROBO-ONEのような企画向けに個人で製作されるロボットにも高度なものが現れ、オーケストラを指揮したり、TPR(トヨタ)等のトランペットを吹いたり、ドラムを叩いたりする物も登場している。
いずれもこれら人の形を目指したロボット開発は、古くからのSF作品で描かれた「人間社会に溶け込んで、人間と共同作業や共に生活するロボット」というイメージに沿ったものでもあり、日本においては『鉄腕アトム』の影響が少なからず二足歩行ロボット開発者の発言に示されている一方、若い世代では一連の巨大ロボットもののアニメーション(→ロボットアニメ)が言及される。たとえばASIMOでは前述の『鉄腕アトム』を、HRP-2/HRP-3開発者の一部は『機動警察パトレイバー』の影響を受けていることを公言している。なおHRPシリーズは実動機のデザインをアニメのメカデザインで活躍する出渕裕に依頼したことでも知られる。
「エンターテイメントロボット」、「家庭用ロボット」、「サービスロボット」、および「掃除用ロボット」も参照
古くはリモートコントロールや簡単なマイクロコンピュータで制御された物が、博覧会や展示施設で訪れた者の目を楽しませていたが、近年ではコンピュータの高度化に伴い、施設案内業務等の実質的な「仕事」を果たすロボットが登場している。
前出のASIMOは、イベント会場の客寄せにレンタルされたり、2002年にはニューヨーク証券取引所で、史上初めて「人間以外では初めて」取引開始の鐘を鳴らす等した。最近では日本科学未来館・ツインリンクもてぎ・鈴鹿サーキットホールメープル・Hondaウエルカムプラザ青山に常設され、訪れた人々の間を歩き回ったりもしている。
近年では、ソニーのAIBOに代表されるエンターテイメントロボットの登場により、一般家庭に愛玩品や娯楽品、果ては「家族」という位置付けで様々な家庭用ロボットが発売されている。これらは人間とコミュニケーションを取ったり、自由に動き回って目を和ませたり、更には「ロボットの居る生活」という「近未来的な暮らしをしたい」という欲求に応えている。これらは主に、ペットという性格付けが強い事から、動物型の物が多く市場投入される傾向にある。
また人型・非人型を含め、自動的に建物内を巡回・警備・清掃するロボットがレンタル開始されたり、病院内の物資運搬にロボットカートが採用されるなど、非人間型ロボットを中心に労働源として人間社会に浸透しつつある。
更に世界初の調理ロボットといわれているビタクラフトのRFIQ自動調理システムや、掃除用ロボットなど、家事の手助けをするロボットも普及している。要介護者の介護作業を助けさせたり、ホームセキュリティの一環で、家庭内を巡回・警邏させる試みなども始まっている。
ロボットの登場するロボットアニメにおいて、主人公らが乗って操る搭乗型二足歩行ロボットが登場、これらに対するあこがれも強い。これに近い位置にあるのは、上半身ではテムザック社のT-52「援竜」であろう。T-52は災害現場における大型レスキューロボットで、身長3.45m、体重5t。無限軌道で移動し、遠隔操縦もしくは有人で操縦できる。二本のマニピュレータは操縦者の腕の動きにあわせて動く。
トヨタは、下半身のみの搭乗型二足歩行ロボットの研究開発も行っており、歩行障害者の使用する車いすの代替をめざしている。これは、i-footと呼ばれ、2005年日本国際博覧会(愛・地球博)で実際に活躍している。高さは2.36mと、動歩行の二足歩行ロボットとしては最大級のサイズを実現し、階段の昇降も可能という。
下半身では榊原機械のLAND WALKERが、すり足のため擬似的なものではあるが、有人での二足歩行を再現している。
詳細は「軍事用ロボット」を参照
軍事活動やそれに付随する危険物処理などでは、人的被害(→戦死)を減らすためにロボットの導入や、様々な活動の機械化が進められている。米国では偵察や輸送など不意な接触に伴い戦闘に巻き込まれやすい分野で、日本では地雷処理など戦後処理の分野での開発が進められている。
宇宙空間でのロボット
宇宙開発においては、その苛酷な環境や生命が失われるリスクの高さから自動的に状況を判断して行動するロボットの重要性は高まっている。また火星や月の裏側など、無線による操縦が出来ない環境では、ある程度自己判断能力のある無人探査機の開発が求められていた。その結果、近年では無人火星探査車ローバーのように、自分で移動経路を判断して探査任務を行うロボットが実用化されている。
日本では、自国製ロケットの運搬能力が(生命維持装置を含めた)人間を軌道上に打ち上げるのが難しい事もあり、国際宇宙ステーション(ISS)への物資輸送においては、自動的に軌道修正を行ったりできるロボット宇宙船(無人のスペースシャトル)の構想が、国内での宇宙開発における主要方針となっている。他にも国際宇宙ステーションからの緊急脱出機材として一時アメリカで開発が進められていた乗員帰還機(CRV)のX-38(Xプレーンシリーズ)は国際宇宙ステーションからパイロット無しで脱出・地球への帰還ができるよう、完全自動化する構想であった。これは開発中止になったが、一種のロボット宇宙船といえよう。
水中探査ロボット
「自律型無人潜水機」、「遠隔操作無人探査機」、および「レスキューロボット」も参照
宇宙と並んでもう一つの未踏破領域である深海探査には、多くの国が乗り出している。日本には、最大潜航深度7000メートルで世界一の無人潜水船「かいこう7000」が開発されている。また、小型で安価な大量のロボット潜水艦を投入しようという計画もあり、海洋資源開発に期待が持たれている。
深海対応型を含め、水中探査ロボットの研究・開発は多くの企業や研究者が取り組んでおり、東日本大震災時は、東工大などが開発した「Anchor Diver 3」、三井造船の「RTV」、米Seamor Marine「seamor-ROV」、米SeaBotix「SARbot」などが遺体や瓦礫の捜索、地形の調査などのために使われた。
火山探査ロボット
千葉工大,東北大学,筑波大学,岡山大学,情報通信研究機構(NICT),産業総合技術研究所(AIST)が火山探査を目的にクローラ型移動ロボット「Kenaf」を開発している。
パワードスーツ、ロボットスーツ、強化外骨格等ともいう。現在の医療での回復が見込まれない、脊髄損傷により歩行ができない人や、それ以外に病気などで歩行が困難な人を対象に、歩く動作を補助する目的で「ロボットスーツ」が開発されている。開発は、筑波大学大学院システム情報工学研究科の山海嘉之教授が中心となって行っており、ロボットベンチャーサイバーダインが設立され、「HAL」を製造している。イメージとしては小説「宇宙の戦士」などに登場する架空の兵器であるパワードスーツといったらわかりやすいかもしれない。福島第一原発事故後、「HAL」を原発作業員のために改良したロボットスーツを公開している[3]。
また、松下電器産業が神戸学院大学総合リハビリテーション学部の中川昭夫教授らのチームと共同開発した半身麻痺患者のリハビリテーション用ロボットスーツは、健常な半身の筋肉の動きをセンサーで検知し、麻痺した側に装着した人工筋に伝えることで左右同じ動きを実現するもので、2008年の実用化が計画されている。
これらは通常「ロボット」と呼ばれる物と異なり単体での動作はなく、人間が装着することで機能し、医療・福祉関係のほかに、物流関係、工事現場など広く民生用への応用が期待される。軍事用に米軍がマサチューセッツ工科大学と共同で強化外骨格の研究をしているといわれる。また、人間の力を拡大するのではなく、手術などの微細な作業の際に人間の動きを縮小するマイクロサージェリー用のロボットも医療用に開発されている。
詳細は「レスキューロボット」を参照
危険な場所に、人間に代わって導入するロボットをレスキューロボットという。既述の地雷撤去ロボットや、災害などにおける被災者の救護活動を担うロボットなどがある。
レスキューロボットは地震や噴火・津波などによる被災地に投入していち早く被災者を発見、保護することで救命率の向上と二次災害による被害を防ぐことを目的とする。これらのロボットはセンサーや移動能力を持ち、倒壊建物に取り残された被災者の発見に役立てるほか、テムザックの「援竜」のように従来からある建設機械を発展させて二本のアームを供えロボット化し、瓦礫撤去を効率よくこなすことが期待される。
火災の場合では、コンビナート火災など危険すぎて消防隊が突入できない個所にも侵入できる放水銃を備えた無人走行放水車や、危険の伴う火災現場に突入して状況を調べるための偵察ロボット、水中を捜索する水中検索装置、マニピュレーターを備え要救助者を回収する救出ロボットが東京消防庁に配備されている([2])。これらはリモートコントロール式の装置であるが、危険個所の消防と被災者の救出に威力を発揮することが期待される。
2011年3月11日東北地方太平洋沖地震による東日本大震災や福島第一原発事故後には、改めてロボットを使った人命救助や、原子力災害ロボットの役割の重要性が再認識された。現在、多くの研究者や企業が原発災害用ロボットの開発に力を入れている。
ロボットは人間が機械装置を発明した段階で、必然的にその発想が生まれた。工学的に精巧な装置を組み合わせていけば、最終的には人間に限りなく近い物が出来上がるだろうという予測から、古今東西・様々な架空のロボットが創造(想像)されている。
「Category:ロボットを題材としたフィクション作品」を参照
ウィキメディア・コモンズには、ロボットに関連するメディアがあります。 |
A robot is a mechanical or virtual artificial agent, usually an electro-mechanical machine that is guided by a computer program or electronic circuitry. Robots can be autonomous or semi-autonomous and range from humanoids such as Honda's Advanced Step in Innovative Mobility (ASIMO) and TOSY's TOSY Ping Pong Playing Robot (TOPIO) to industrial robots, collectively programmed 'swarm' robots, and even microscopic nano robots. By mimicking a lifelike appearance or automating movements, a robot may convey a sense of intelligence or thought of its own.
The branch of technology that deals with the design, construction, operation, and application of robots,[2] as well as computer systems for their control, sensory feedback, and information processing is robotics. These technologies deal with automated machines that can take the place of humans in dangerous environments or manufacturing processes, or resemble humans in appearance, behavior, and/or cognition. Many of today's robots are inspired by nature contributing to the field of bio-inspired robotics. These robots have also created a newer branch of robotics: Soft robotics.
From the time of ancient civilization there have been many accounts of user-configurable automated devices and even automata resembling animals and humans, designed primarily as entertainment. As mechanical techniques developed through the Industrial age, there appeared more practical applications such as automated machines, remote-control and wireless remote-control. Electronics evolved into the driving force of development with the advent of the first electronic autonomous robots created by William Grey Walter in Bristol, England in 1948. The first digital and programmable robot was invented by George Devol in 1954 and was named the Unimate. It was sold to General Motors in 1961 where it was used to lift pieces of hot metal from die casting machines at the Inland Fisher Guide Plant in the West Trenton section of Ewing Township, New Jersey.[3]
Robots have replaced humans[4] in the assistance of performing those repetitive and dangerous tasks which humans prefer not to do, or are unable to do due to size limitations, or even those such as in outer space or at the bottom of the sea where humans could not survive the extreme environments.
There are concerns about the increasing use of robots and their role in society. Robots are blamed for rising unemployment as they replace workers in some functions. The use of robots in military combat raises ethical concerns. The possibility of robot autonomy and potential repercussions has been addressed in fiction and may be a realistic concern in the future.
The word robot can refer to both physical robots and virtual software agents, but the latter are usually referred to as bots.[5] There is no consensus on which machines qualify as robots but there is general agreement among experts, and the public, that robots tend to do some or all of the following: move around, operate a mechanical limb, sense and manipulate their environment, and exhibit intelligent behavior — especially behavior which mimics humans or other animals. In practical terms, "robot" usually refers to a machine which can be electronically programmed to carry out a variety of physical tasks or actions.
There is no one definition of robot that satisfies everyone and many people have their own.[6] For example Joseph Engelberger, a pioneer in industrial robotics, once remarked: "I can't define a robot, but I know one when I see one."[7] The two ways that robots differ from actual beings are, simply stated, in the domain of cognition, and in the domain of biological form. The general consensus is that a "robot" is a machine and not a being simply because it is not intelligent (it requires programming to function), regardless of how human-like it may appear. In contrast, an imaginary "machine" or "artificial life form" (as in science fiction) that could think near or above human intelligence, and had a sensory body, would no longer be a "robot" but would be some kind of "artificial being" or "cognitive robot", (see also cyborg).
According to the Encyclopaedia Britannica a robot is "any automatically operated machine that replaces human effort, though it may not resemble human beings in appearance or perform functions in a humanlike manner." Merriam-Webster describes a robot as a "machine that looks like a human being and performs various complex acts (as walking or talking) of a human being", or a "device that automatically performs complicated often repetitive tasks", or a "mechanism guided by automatic controls".[8]
The idea of automata originates in the mythologies of many cultures around the world. Engineers and inventors from ancient civilizations, including Ancient China,[9] Ancient Greece, and Ptolemaic Egypt,[10] attempted to build self-operating machines, some resembling animals and humans. Early descriptions of automata include the artificial doves of Archytas,[11] the artificial birds of Mozi and Lu Ban,[12] a "speaking" automaton by Hero of Alexandria, a washstand automaton by Philo of Byzantium, and a human automaton described in the Lie Zi.[9]
Many ancient mythologies, and most modern religions include artificial people, such as the mechanical servants built by the Greek god Hephaestus[13] (Vulcan to the Romans), the clay golems of Jewish legend and clay giants of Norse legend, and Galatea, the mythical statue of Pygmalion that came to life. Since circa 400 BC, myths of Crete include Talos, a man of bronze who guarded the Cretan island of Europa from pirates.
In ancient Greece, the Greek engineer Ctesibius (c. 270 BC) "applied a knowledge of pneumatics and hydraulics to produce the first organ and water clocks with moving figures."[14][15] In the 4th century BC, the Greek mathematician Archytas of Tarentum postulated a mechanical steam-operated bird he called "The Pigeon". Hero of Alexandria (10–70 AD), a Greek mathematician and inventor, created numerous user-configurable automated devices, and described machines powered by air pressure, steam and water.[16]
The 11th century Lokapannatti tells of how the Buddhas relics were protected by mechanical robots (bhuta vahana yanta), from the kingdom of Roma visaya (Rome); until they were disarmed by King Ashoka. [17] [18]
In ancient China, the 3rd century text of the Lie Zi describes an account of humanoid automata, involving a much earlier encounter between Chinese emperor King Mu of Zhou and a mechanical engineer known as Yan Shi, an 'artificer'. Yan Shi proudly presented the king with a life-size, human-shaped figure of his mechanical 'handiwork' made of leather, wood, and artificial organs.[9] There are also accounts of flying automata in the Han Fei Zi and other texts, which attributes the 5th century BC Mohist philosopher Mozi and his contemporary Lu Ban with the invention of artificial wooden birds (ma yuan) that could successfully fly.[12] In 1066, the Chinese inventor Su Song built a water clock in the form of a tower which featured mechanical figurines which chimed the hours.
The beginning of automata is associated with the invention of early Su Song's astronomical clock tower featured mechanical figurines that chimed the hours.[19][20][21] His mechanism had a programmable drum machine with pegs (cams) that bumped into little levers that operated percussion instruments. The drummer could be made to play different rhythms and different drum patterns by moving the pegs to different locations.[21]
In Renaissance Italy, Leonardo da Vinci (1452–1519) sketched plans for a humanoid robot around 1495. Da Vinci's notebooks, rediscovered in the 1950s, contained detailed drawings of a mechanical knight now known as Leonardo's robot, able to sit up, wave its arms and move its head and jaw.[22] The design was probably based on anatomical research recorded in his Vitruvian Man. It is not known whether he attempted to build it.
In Japan, complex animal and human automata were built between the 17th to 19th centuries, with many described in the 18th century Karakuri zui (Illustrated Machinery, 1796). One such automaton was the karakuri ningyō, a mechanized puppet.[23] Different variations of the karakuri existed: the Butai karakuri, which were used in theatre, the Zashiki karakuri, which were small and used in homes, and the Dashi karakuri which were used in religious festivals, where the puppets were used to perform reenactments of traditional myths and legends.
In France, between 1738 and 1739, Jacques de Vaucanson exhibited several life-sized automatons: a flute player, a pipe player and a duck. The mechanical duck could flap its wings, crane its neck, and swallow food from the exhibitor's hand, and it gave the illusion of digesting its food by excreting matter stored in a hidden compartment.[24]
Remotely operated vehicles were demonstrated in the late 19th Century in the form of several types of remotely controlled torpedos. The early 1870s saw remotely controlled torpedos by John Ericsson (pneumatic), John Louis Lay (electric wire guided), and Victor von Scheliha (electric wire guided).[25]
The Brennan torpedo, invented by Louis Brennan in 1877 was powered by two contra-rotating propellors that were spun by rapidly pulling out wires from drums wound inside the torpedo. Differential speed on the wires connected to the shore station allowed the torpedo to be guided to its target, making it "the world's first practical guided missile".[26] In 1897 the British inventor Ernest Wilson was granted a patent for a torpedo remotely controlled by "Hertzian" (radio) waves[27][28] and in 1898 Nikola Tesla publicly demonstrated a wireless-controlled torpedo that he hoped to sell to the US Navy.[29][30]
Archibald Low, known as the "father of radio guidance systems" for his pioneering work on guided rockets and planes during the First World War. In 1917, he demonstrated a remote controlled aircraft to the Royal Flying Corps and in the same year built the first wire-guided rocket.
The term 'robot' was first used to denote fictional automata in a 1921 play R.U.R. Rossum's Universal Robots by the Czech writer, Karel Čapek.
In 1928, one of the first humanoid robots was exhibited at the annual exhibition of the Model Engineers Society in London. Invented by W. H. Richards, the robot Eric's frame consisted of an aluminium body of armour with eleven electromagnets and one motor powered by a twelve-volt power source. The robot could move its hands and head and could be controlled through remote control or voice control.[31]
Westinghouse Electric Corporation built Televox in 1926; it was a cardboard cutout connected to various devices which users could turn on and off. In 1939, the humanoid robot known as Elektro was debuted at the World's Fair.[32][33] Seven feet tall (2.1 m) and weighing 265 pounds (120.2 kg), it could walk by voice command, speak about 700 words (using a 78-rpm record player), smoke cigarettes, blow up balloons, and move its head and arms. The body consisted of a steel gear, cam and motor skeleton covered by an aluminum skin. In 1928, Japan's first robot, Gakutensoku, was designed and constructed by biologist Makoto Nishimura.
The first electronic autonomous robots with complex behaviour were created by William Grey Walter of the Burden Neurological Institute at Bristol, England in 1948 and 1949. He wanted to prove that rich connections between a small number of brain cells could give rise to very complex behaviors - essentially that the secret of how the brain worked lay in how it was wired up. His first robots, named Elmer and Elsie, were constructed between 1948 and 1949 and were often described as tortoises due to their shape and slow rate of movement. The three-wheeled tortoise robots were capable of phototaxis, by which they could find their way to a recharging station when they ran low on battery power.
Walter stressed the importance of using purely analogue electronics to simulate brain processes at a time when his contemporaries such as Alan Turing and John von Neumann were all turning towards a view of mental processes in terms of digital computation. His work inspired subsequent generations of robotics researchers such as Rodney Brooks, Hans Moravec and Mark Tilden. Modern incarnations of Walter's turtles may be found in the form of BEAM robotics.[34]
The first digitally operated and programmable robot was invented by George Devol in 1954 and was ultimately called the Unimate. This ultimately laid the foundations of the modern robotics industry.[35] Devol sold the first Unimate to General Motors in 1960, and it was installed in 1961 in a plant in Trenton, New Jersey to lift hot pieces of metal from a die casting machine and stack them.[36] Devol’s patent for the first digitally operated programmable robotic arm represents the foundation of the modern robotics industry.[37]
The first palletizing robot was introduced in 1963 by the Fuji Yusoki Kogyo Company.[38] In 1973, a robot with six electromechanically driven axes was patented [39][40] by KUKA robotics in Germany, and the programmable universal manipulation arm was invented by Victor Scheinman in 1976, and the design was sold to Unimation.
Commercial and industrial robots are now in widespread use performing jobs more cheaply or with greater accuracy and reliability than humans. They are also employed for jobs which are too dirty, dangerous or dull to be suitable for humans. Robots are widely used in manufacturing, assembly and packing, transport, earth and space exploration, surgery, weaponry, laboratory research, and mass production of consumer and industrial goods.[41]
The word robot was introduced to the public by the Czech interwar writer Karel Čapek in his play R.U.R. (Rossum's Universal Robots), published in 1920.[42] The play begins in a factory that makes artificial people called robots, though they are closer to the modern ideas of androids, creatures who can be mistaken for humans. They can plainly think for themselves, though they seem happy to serve. At issue is whether the robots are being exploited and the consequences of their treatment.
Karel Čapek himself did not coin the word. He wrote a short letter in reference to an etymology in the Oxford English Dictionary in which he named his brother, the painter and writer Josef Čapek, as its actual originator.[42]
In an article in the Czech journal Lidové noviny in 1933, he explained that he had originally wanted to call the creatures laboři ("workers", from Latin labor). However, he did not like the word, and sought advice from his brother Josef, who suggested "roboti". The word robota means literally "corvée", "serf labor", and figuratively "drudgery" or "hard work" in Czech and also (more general) "work", "labor" in many Slavic languages (e.g.: Bulgarian, Russian, Serbian, Slovak, Polish, Macedonian, Ukrainian, archaic Czech). Traditionally the robota was the work period a serf (corvée) had to give for his lord, typically 6 months of the year. The origin of the word is the Old Church Slavonic (Old Bulgarian) rabota "servitude" ("work" in contemporary Bulgarian and Russian), which in turn comes from the Proto-Indo-European root *orbh-. Robot is cognate with the German root Arbeit (work).[43][44]
The word robotics, used to describe this field of study,[2] was coined by the science fiction writer Isaac Asimov. Asimov created the "Three Laws of Robotics" which are a recurring theme in his books. These have since been used by many others to define laws used in fact and fiction.
Mobile robots have the capability to move around in their environment and are not fixed to one physical location. An example of a mobile robot that is in common use today is the automated guided vehicle or automatic guided vehicle (AGV). An AGV is a mobile robot that follows markers or wires in the floor, or uses vision or lasers.[citation needed] AGVs are discussed later in this article.
Mobile robots are also found in industry, military and security environments. They also appear as consumer products, for entertainment or to perform certain tasks like vacuum cleaning. Mobile robots are the focus of a great deal of current research and almost every major university has one or more labs that focus on mobile robot research.[citation needed]
Mobile robots are usually used in tightly controlled environments such as on assembly lines because they have difficulty responding to unexpected interference. Because of this most humans rarely encounter robots. However domestic robots for cleaning and maintenance are increasingly common in and around homes in developed countries. Robots can also be found in military applications.[citation needed]
Industrial robots usually consist of a jointed arm (multi-linked manipulator) and an end effector that is attached to a fixed surface. One of the most common type of end effector is a gripper assembly.
The International Organization for Standardization gives a definition of a manipulating industrial robot in ISO 8373:
"an automatically controlled, reprogrammable, multipurpose, manipulator programmable in three or more axes, which may be either fixed in place or mobile for use in industrial automation applications."[45]
This definition is used by the International Federation of Robotics, the European Robotics Research Network (EURON) and many national standards committees.[46]
Most commonly industrial robots are fixed robotic arms and manipulators used primarily for production and distribution of goods. The term "service robot" is less well-defined. The International Federation of Robotics has proposed a tentative definition, "A service robot is a robot which operates semi- or fully autonomously to perform services useful to the well-being of humans and equipment, excluding manufacturing operations."[47]
Robots are used as educational assistants to teachers. From the 1980s, robots such as turtles were used in schools and programmed using the Logo language.[48][49]
There are robot kits like Lego Mindstorms, BIOLOID, OLLO from ROBOTIS, or BotBrain Educational Robots can help children to learn about mathematics, physics, programming, and electronics. Robotics have also been introduced into the lives of elementary and high school students in the form of robot competitions with the company FIRST (For Inspiration and Recognition of Science and Technology). The organization is the foundation for the FIRST Robotics Competition, FIRST LEGO League, Junior FIRST LEGO League, and FIRST Tech Challenge competitions.
There have also been devices shaped like robots such as the teaching computer, Leachim (1974), and 2-XL (1976), a robot shaped game / teaching toy based on an 8-track tape player, both invented Michael J. Freeman.
Modular robots are a new breed of robots that are designed to increase the utilization of the robots by modularizing the robots. The functionality and effectiveness of a modular robot is easier to increase compared to conventional robots. These robots are composed of a single type of identical, several different identical module types, or similarly shaped modules, which vary in size. Their architectural structure allows hyper-redundancy for modular robots, as they can be designed with more than 8 degrees of freedom (DOF). Creating the programming, inverse kinematics and dynamics for modular robots is more complex than with traditional robots. Modular robots may be composed of L-shaped modules, cubic modules, and U and H-shaped modules. ANAT technology, an early modular robotic technology patented by Robotics Design Inc., allows the creation of modular robots from U and H shaped modules that connect in a chain, and are used to form heterogeneous and homogenous modular robot systems. These “ANAT robots” can be designed with “n” DOF as each module is a complete motorized robotic system that folds relatively to the modules connected before and after it in its chain, and therefore a single module allows one degree of freedom. The more modules that are connected to one another, the more degrees of freedom it will have. L-shaped modules can also be designed in a chain, and must become increasingly smaller as the size of the chain increases, as payloads attached to the end of the chain place a greater strain on modules that are further from the base. ANAT H-shaped modules do not suffer from this problem, as their design allows a modular robot to distribute pressure and impacts evenly amongst other attached modules, and therefore payload-carrying capacity does not decrease as the length of the arm increases. Modular robots can be manually or self-reconfigured to form a different robot, that may perform different applications. Because modular robots of the same architecture type are composed of modules that compose different modular robots, a snake-arm robot can combine with another to form a dual or quadra-arm robot, or can split into several mobile robots, and mobile robots can split into multiple smaller ones, or combine with others into a larger or different one. This allows a single modular robot the ability to be fully specialized in a single task, as well as the capacity to be specialized to perform multiple different tasks.
Modular robotic technology is currently being applied in hybrid transportation,[50] industrial automation,[51] duct cleaning[52] and handling. Many research centres and universities have also studied this technology, and have developed prototypes.
A collaborative robot or cobot is a robot that can safely and effectively interact with human workers while performing simple industrial tasks. However, end-effectors and other environmental conditions may create hazards, and as such risk assessments should be done before using any industrial motion-control application.[53]
The collaborative robots most widely used in industries today are manufactured by Universal Robots in Denmark.[citation needed]
Baxter, introduced on September 18, 2012, is a product of Rethink Robotics (whose founder was Rodney Brooks), was an industrial robot selling for about that was designed to safely interact with neighboring human workers and be programmable for performing simple tasks.[54] The robot stopped if its movement encountered a human in the way of its robotic arm and had a prominent off switch, which its human partner could push if necessary. The product, intended for sale to small businesses, was touted as the robotic analogue of the personal computer. Costs were projected to be the equivalent of a worker making an hour.[55]
Roughly half of all the robots in the world are in Asia, 32% in Europe, and 16% in North America, 1% in Australasia and 1% in Africa.[58] 40% of all the robots in the world are in Japan,[59] making Japan the country with the highest number of robots.
As robots have become more advanced and sophisticated, experts and academics have increasingly explored the questions of what ethics might govern robots' behavior,[61] and whether robots might be able to claim any kind of social, cultural, ethical or legal rights.[62] One scientific team has said that it is possible that a robot brain will exist by 2019.[63] Others predict robot intelligence breakthroughs by 2050.[64] Recent advances have made robotic behavior more sophisticated.[65] The social impact of intelligent robots is subject of a 2010 documentary film called Plug & Pray.[66]
Vernor Vinge has suggested that a moment may come when computers and robots are smarter than humans. He calls this "the Singularity".[67] He suggests that it may be somewhat or possibly very dangerous for humans.[68] This is discussed by a philosophy called Singularitarianism.
In 2009, experts attended a conference hosted by the Association for the Advancement of Artificial Intelligence (AAAI) to discuss whether computers and robots might be able to acquire any autonomy, and how much these abilities might pose a threat or hazard. They noted that some robots have acquired various forms of semi-autonomy, including being able to find power sources on their own and being able to independently choose targets to attack with weapons. They also noted that some computer viruses can evade elimination and have achieved "cockroach intelligence." They noted that self-awareness as depicted in science-fiction is probably unlikely, but that there were other potential hazards and pitfalls.[67] Various media sources and scientific groups have noted separate trends in differing areas which might together result in greater robotic functionalities and autonomy, and which pose some inherent concerns.[69][70][71]
Some experts and academics have questioned the use of robots for military combat, especially when such robots are given some degree of autonomous functions.[72] There are also concerns about technology which might allow some armed robots to be controlled mainly by other robots.[73] The US Navy has funded a report which indicates that, as military robots become more complex, there should be greater attention to implications of their ability to make autonomous decisions.[74][75] One researcher states that autonomous robots might be more humane, as they could make decisions more effectively. However, other experts question this.[76]
One robot in particular, the EATR, has generated public concerns [77] over its fuel source, as it can continually refuel itself using organic substances.[78] Although the engine for the EATR is designed to run on biomass and vegetation[79] specifically selected by its sensors, which it can find on battlefields or other local environments, the project has stated that chicken fat can also be used.[80]
Manuel De Landa has noted that "smart missiles" and autonomous bombs equipped with artificial perception can be considered robots, as they make some of their decisions autonomously. He believes this represents an important and dangerous trend in which humans are handing over important decisions to machines.[81]
A recent example of human replacement involves Taiwanese technology company Foxconn who, in July 2011, announced a three-year plan to replace workers with more robots. At present the company uses ten thousand robots but will increase them to a million robots over a three-year period.[82]
Service robots of different varieties including medical robots, underwater robots, surveillance robots, demolition robots and other types of robots that carry out a multitude of jobs are gaining in numbers. Service robots are everyday tools for mankind. They can clean floors, mow lawns and guard homes and will also assist old and handicapped people, do some surgeries, inspect pipes and sites that are hazardous to people, fight fires and defuse bombs.[83]
At present, there are two main types of robots, based on their use: general-purpose autonomous robots and dedicated robots.
Robots can be classified by their specificity of purpose. A robot might be designed to perform one particular task extremely well, or a range of tasks less well. Of course, all robots by their nature can be re-programmed to behave differently, but some are limited by their physical form. For example, a factory robot arm can perform jobs such as cutting, welding, gluing, or acting as a fairground ride, while a pick-and-place robot can only populate printed circuit boards.
General-purpose autonomous robots can perform a variety of functions independently. General-purpose autonomous robots typically can navigate independently in known spaces, handle their own re-charging needs, interface with electronic doors and elevators and perform other basic tasks. Like computers, general-purpose robots can link with networks, software and accessories that increase their usefulness. They may recognize people or objects, talk, provide companionship, monitor environmental quality, respond to alarms, pick up supplies and perform other useful tasks. General-purpose robots may perform a variety of functions simultaneously or they may take on different roles at different times of day. Some such robots try to mimic human beings and may even resemble people in appearance; this type of robot is called a humanoid robot. Humanoid robots are still in a very limited stage, as no humanoid robot can, as of yet, actually navigate around a room that it has never been in.[citation needed] Thus, humanoid robots are really quite limited, despite their intelligent behaviors in their well-known environments.
Over the last three decades, automobile factories have become dominated by robots. A typical factory contains hundreds of industrial robots working on fully automated production lines, with one robot for every ten human workers. On an automated production line, a vehicle chassis on a conveyor is welded, glued, painted and finally assembled at a sequence of robot stations.
Industrial robots are also used extensively for palletizing and packaging of manufactured goods, for example for rapidly taking drink cartons from the end of a conveyor belt and placing them into boxes, or for loading and unloading machining centers.
Mass-produced printed circuit boards (PCBs) are almost exclusively manufactured by pick-and-place robots, typically with SCARA manipulators, which remove tiny electronic components from strips or trays, and place them on to PCBs with great accuracy.[84] Such robots can place hundreds of thousands of components per hour, far out-performing a human in speed, accuracy, and reliability.[85]
Mobile robots, following markers or wires in the floor, or using vision[86] or lasers, are used to transport goods around large facilities, such as warehouses, container ports, or hospitals.[87]
There are many jobs which humans would rather leave to robots. The job may be boring, such as domestic cleaning, or dangerous, such as exploring inside a volcano.[94] Other jobs are physically inaccessible, such as exploring another planet,[95] cleaning the inside of a long pipe, or performing laparoscopic surgery.[96]
Almost every unmanned space probe ever launched was a robot.[97][98] Some were launched in the 1960s with very limited abilities, but their ability to fly and land (in the case of Luna 9) is an indication of their status as a robot. This includes the Voyager probes and the Galileo probes, and others.
Teleoperated robots, or telerobots are devices remotely operated from a distance by a human operator rather than following a predetermined sequence of movements. They are used when a human cannot be present on site to perform a job because it is dangerous, far away, or inaccessible. The robot may be in another room or another country, or may be on a very different scale to the operator. For instance, a laparoscopic surgery robot allows the surgeon to work inside a human patient on a relatively small scale compared to open surgery, significantly shortening recovery time.[96] They can also be used to avoid exposing workers to the hazardous and tight spaces such as in duct cleaning. When disabling a bomb, the operator sends a small robot to disable it. Several authors have been using a device called the Longpen to sign books remotely.[99] Teleoperated robot aircraft, like the Predator Unmanned Aerial Vehicle, are increasingly being used by the military. These pilotless drones can search terrain and fire on targets.[100][101] Hundreds of robots such as iRobot's Packbot and the Foster-Miller TALON are being used in Iraq and Afghanistan by the U.S. military to defuse roadside bombs or improvised explosive devices (IEDs) in an activity known as explosive ordnance disposal (EOD).[102]
Used to pick fruit on orchards at a cost lower than that of human pickers.
Domestic robots are simple robots dedicated to a single task work in home use. They are used in simple but unwanted jobs, such as vacuum cleaning and floor washing, and lawn mowing.
Military robots include the SWORDS robot which is currently used in ground-based combat. It can use a variety of weapons and there is some discussion of giving it some degree of autonomy in battleground situations.[103][104][105]
Unmanned combat air vehicles (UCAVs), which are an upgraded form of UAVs, can do a wide variety of missions, including combat. UCAVs are being designed such as the BAE Systems Mantis which would have the ability to fly themselves, to pick their own course and target, and to make most decisions on their own.[106] The BAE Taranis is a UCAV built by Great Britain which can fly across continents without a pilot and has new means to avoid detection.[107] Flight trials are expected to begin in 2011.[108][109]
The AAAI has studied this topic in depth[61] and its president has commissioned a study to look at this issue.[110]
Some have suggested a need to build "Friendly AI", meaning that the advances which are already occurring with AI should also include an effort to make AI intrinsically friendly and humane.[111] Several such measures reportedly already exist, with robot-heavy countries such as Japan and South Korea[112] having begun to pass regulations requiring robots to be equipped with safety systems, and possibly sets of 'laws' akin to Asimov's Three Laws of Robotics.[113][114] An official report was issued in 2009 by the Japanese government's Robot Industry Policy Committee.[115] Chinese officials and researchers have issued a report suggesting a set of ethical rules, and a set of new legal guidelines referred to as "Robot Legal Studies."[116] Some concern has been expressed over a possible occurrence of robots telling apparent falsehoods.[117]
Mining robots are designed to help counteract a number of challenges currently facing the mining industry, including skills shortages, improving productivity from declining ore grades, and achieving environmental targets. Due to the hazardous nature of mining, in particular underground mining, the prevalence of autonomous, semi-autonomous, and tele-operated robots has greatly increased in recent times. A number of vehicle manufacturers provide autonomous trains, trucks and loaders that will load material, transport it on the mine site to its destination, and unload without requiring human intervention. One of the world's largest mining corporations, Rio Tinto, has recently expanded its autonomous vehicle fleet to the world's largest, consisting of 150 autonomous Komatsu trucks, operating in Western Australia.[118]
Drilling, longwall and rockbreaking machines are now also available as autonomous robots.[119] The Atlas Copco Rig Control System can autonomously execute a drilling plan on a drilling rig, moving the rig into position using GPS, set up the drill rig and drill down to specified depths.[120] Similarly, the Transmin Rocklogic system can automatically plan a path to position a rockbreaker at a selected destination.[121] These systems greatly enhance the safety and efficiency of mining operations.
Robotic kits like Lego Mindstorms, BIOLOID, OLLO from ROBOTIS, or BotBrain Educational Robots can help children to learn about mathematics, physics, programming, and electronics.
Robotics have also been introduced into the lives of elementary and high school students with the company FIRST (For Inspiration and Recognition of Science and Technology). The organization is the foundation for the FIRST Robotics Competition, FIRST LEGO League, Junior FIRST LEGO League, and FIRST Tech Challenge competitions.
Virtual tutors are some kind of embodied agent that helps children to do their homework, for example, on peer to peer basis.
Robots as teacher assistants let children to be more assertive during the class and get more motivated. South Korea is the first country deploying a program to have a robot in each school.[citation needed]
Robots in healthcare have two main functions. Those which assist an individual, such as a sufferer of a disease like Multiple Sclerosis, and those which aid in the overall systems such as pharmacies and hospitals.
Robots have developed over time from simple basic robotic assistants, such as the Handy 1,[122] through to semi-autonomous robots, such as FRIEND which can assist the elderly and disabled with common tasks.
The population is aging in many countries, especially Japan, meaning that there are increasing numbers of elderly people to care for, but relatively fewer young people to care for them.[123][124] Humans make the best carers, but where they are unavailable, robots are gradually being introduced.[125]
FRIEND is a semi-autonomous robot designed to support disabled and elderly people in their daily life activities, like preparing and serving a meal. FRIEND make it possible for patients who are paraplegic, have muscle diseases or serious paralysis (due to strokes etc.), to perform tasks without help from other people like therapists or nursing staff.
This section does not cite any references or sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (July 2009) |
Script Pro manufactures a robot designed to help pharmacies fill prescriptions that consist of oral solids or medications in pill form. The pharmacist or pharmacy technician enters the prescription information into its information system. The system, upon determining whether or not the drug is in the robot, will send the information to the robot for filling. The robot has 3 different size vials to fill determined by the size of the pill. The robot technician, user, or pharmacist determines the needed size of the vial based on the tablet when the robot is stocked. Once the vial is filled it is brought up to a conveyor belt that delivers it to a holder that spins the vial and attaches the patient label. Afterwards it is set on another conveyor that delivers the patient’s medication vial to a slot labeled with the patient's name on an LED read out. The pharmacist or technician then checks the contents of the vial to ensure it’s the correct drug for the correct patient and then seals the vials and sends it out front to be picked up. The robot is a very time efficient device that the pharmacy depends on to fill prescriptions.
McKesson’s Robot RX is another healthcare robotics product that helps pharmacies dispense thousands of medications daily with little or no errors. The robot can be ten feet wide and thirty feet long and can hold hundreds of different kinds of medications and thousands of doses. The pharmacy saves many resources like staff members that are otherwise unavailable in a resource scarce industry. It uses an electromechanical head coupled with a pneumatic system to capture each dose and deliver it to its either stocked or dispensed location. The head moves along a single axis while it rotates 180 degrees to pull the medications. During this process it uses barcode technology to verify its pulling the correct drug. It then delivers the drug to a patient specific bin on a conveyor belt. Once the bin is filled with all of the drugs that a particular patient needs and that the robot stocks, the bin is then released and returned out on the conveyor belt to a technician waiting to load it into a cart for delivery to the floor.
While most robots today are installed in factories or homes, performing labour or life saving jobs, many new types of robot are being developed in laboratories around the world. Much of the research in robotics focuses not on specific industrial tasks, but on investigations into new types of robot, alternative ways to think about or design robots, and new ways to manufacture them. It is expected that these new types of robot will be able to solve real world problems when they are finally realized.[citation needed]
Nanorobotics is the emerging technology field of creating machines or robots whose components are at or close to the microscopic scale of a nanometer (10−9 meters). Also known as "nanobots" or "nanites", they would be constructed from molecular machines. So far, researchers have mostly produced only parts of these complex systems, such as bearings, sensors, and synthetic molecular motors, but functioning robots have also been made such as the entrants to the Nanobot Robocup contest.[127] Researchers also hope to be able to create entire robots as small as viruses or bacteria, which could perform tasks on a tiny scale. Possible applications include micro surgery (on the level of individual cells), utility fog,[128] manufacturing, weaponry and cleaning.[129] Some people have suggested that if there were nanobots which could reproduce, the earth would turn into "grey goo", while others argue that this hypothetical outcome is nonsense.[130][131]
A few researchers have investigated the possibility of creating robots which can alter their physical form to suit a particular task,[132] like the fictional T-1000. Real robots are nowhere near that sophisticated however, and mostly consist of a small number of cube shaped units, which can move relative to their neighbours. Algorithms have been designed in case any such robots become a reality.[133]
Robots with silicone bodies and flexible actuators (air muscles, electroactive polymers, and ferrofluids), controlled using fuzzy logic and neural networks, look and feel different from robots with rigid skeletons, and can have different behaviors.[134]
Inspired by colonies of insects such as ants and bees, researchers are modeling the behavior of swarms of thousands of tiny robots which together perform a useful task, such as finding something hidden, cleaning, or spying. Each robot is quite simple, but the emergent behavior of the swarm is more complex. The whole set of robots can be considered as one single distributed system, in the same way an ant colony can be considered a superorganism, exhibiting swarm intelligence. The largest swarms so far created include the iRobot swarm, the SRI/MobileRobots CentiBots project[135] and the Open-source Micro-robotic Project swarm, which are being used to research collective behaviors.[136][137] Swarms are also more resistant to failure. Whereas one large robot may fail and ruin a mission, a swarm can continue even if several robots fail. This could make them attractive for space exploration missions, where failure is normally extremely costly.[138]
Robotics also has application in the design of virtual reality interfaces. Specialized robots are in widespread use in the haptic research community. These robots, called "haptic interfaces", allow touch-enabled user interaction with real and virtual environments. Robotic forces allow simulating the mechanical properties of "virtual" objects, which users can experience through their sense of touch.[139]
Some robots are used for entertainment and as a demonstration of the newest technology. This nimble automoton is a perfect example of this process. Being the main attractions at Ce-BIT, the world’s biggest IT trade fair in Hanover, Germany.[140]
Various techniques have emerged to develop the science of robotics and robots. One method is evolutionary robotics, in which a number of differing robots are submitted to tests. Those which perform best are used as a model to create a subsequent "generation" of robots. Another method is developmental robotics, which tracks changes and development within a single robot in the areas of problem-solving and other functions.
Japan hopes to have full-scale commercialization of service robots by 2025. Much technological research in Japan is led by Japanese government agencies, particularly the Trade Ministry.[141]
As robots become more advanced, eventually there may be a standard computer operating system designed mainly for robots. Robot Operating System is an open-source set of programs being developed at Stanford University, the Massachusetts Institute of Technology and the Technical University of Munich, Germany, among others. ROS provides ways to program a robot's navigation and limbs regardless of the specific hardware involved. It also provides high-level commands for items like image recognition and even opening doors. When ROS boots up on a robot's computer, it would obtain data on attributes such as the length and movement of robots' limbs. It would relay this data to higher-level algorithms. Microsoft is also developing a "Windows for robots" system with its Robotics Developer Studio, which has been available since 2007.[142]
The Caterpillar Company is making a dump truck which can drive itself without any human operator.[143]
Many future applications of robotics seem obvious to people, even though they are well beyond the capabilities of robots available at the time of the prediction.[144][145] As early as 1982 people were confident that someday robots would:[146] 1. clean parts by removing molding flash 2. spray paint automobiles with absolutely no human presence 3. pack things in boxes—for example, orient and nest chocolate candies in candy boxes 4. make electrical cable harness 5. load trucks with boxes—a packing problem 6. handle soft goods, such as garments and shoes 7. shear sheep 8. prosthesis 9. cook fast food and work in other service industries 10. household robot.
Generally such predictions are overly optimistic in timescale.
A literate or 'reading robot' named Marge has intelligence that comes from software. She can read newspapers, find and correct misspelled words, learn about banks like Barclays, and understand that some restaurants are better places to eat than others.[147]
Robotic characters, androids (artificial men/women) or gynoids (artificial women), and cyborgs (also "bionic men/women", or humans with significant mechanical enhancements) have become a staple of science fiction.
The first reference in Western literature to mechanical servants appears in Homer's Iliad. In Book XVIII, Hephaestus, god of fire, creates new armor for the hero Achilles, assisted by robots.[148] According to the Rieu translation, "Golden maidservants hastened to help their master. They looked like real women and could not only speak and use their limbs but were endowed with intelligence and trained in handwork by the immortal gods." Of course, the words "robot" or "android" are not used to describe them, but they are nevertheless mechanical devices human in appearance. "The first use of the word Robot was in Karel Čapek's play R.U.R. (Rossum's Universal Robots) (written in 1920)". Writer Karel Čapek was born in Czechoslovakia (Czech Republic).
Possibly the most prolific author of the twentieth century was Isaac Asimov (1920–1992)[149] who published over five-hundred books.[150] Asimov is probably best remembered for his science-fiction stories and especially those about robots, where he placed robots and their interaction with society at the center of many of his works.[151][152] Asimov carefully considered the problem of the ideal set of instructions robots might be given in order to lower the risk to humans, and arrived at his Three Laws of Robotics: a robot may not injure a human being or, through inaction, allow a human being to come to harm; a robot must obey orders given to it by human beings, except where such orders would conflict with the First Law; and a robot must protect its own existence as long as such protection does not conflict with the First or Second Law.[153] These were introduced in his 1942 short story "Runaround", although foreshadowed in a few earlier stories. Later, Asimov added the Zeroth Law: "A robot may not harm humanity, or, by inaction, allow humanity to come to harm"; the rest of the laws are modified sequentially to acknowledge this.
According to the Oxford English Dictionary, the first passage in Asimov's short story "Liar!" (1941) that mentions the First Law is the earliest recorded use of the word robotics. Asimov was not initially aware of this; he assumed the word already existed by analogy with mechanics, hydraulics, and other similar terms denoting branches of applied knowledge.[154]
Fears and concerns about robots have been repeatedly expressed in a wide range of books and films. A common theme is the development of a master race of conscious and highly intelligent robots, motivated to take over or destroy the human race. (See The Terminator, Runaway, RoboCop, the Replicators in Stargate, the Cylons in Battlestar Galactica, The Matrix, Enthiran and I, Robot.) Some fictional robots are programmed to kill and destroy; others gain superhuman intelligence and abilities by upgrading their own software and hardware. Examples of popular media where the robot becomes evil are 2001: A Space Odyssey, Red Planet and Enthiran. Another common theme is the reaction, sometimes called the "uncanny valley", of unease and even revulsion at the sight of robots that mimic humans too closely.[60] Frankenstein (1818), often called the first science fiction novel, has become synonymous with the theme of a robot or monster advancing beyond its creator. In the TV show, Futurama, the robots are portrayed as humanoid figures that live alongside humans, not as robotic butlers. They still work in industry, but these robots carry out daily lives. Other problems may include events pertaining to robot surrogates (e.g. the movie Surrogates) where tissue of living organisms is interchanged with robotic systems. These problems can leave many possibilities where electronic viruses or an electro magnetic pulse (EMP) can destroy not only the robot but kill the host/operator as well.
Robotics portal |
Find more about Robot at Wikipedia's sister projects | |
Definitions and translations from Wiktionary | |
Media from Commons | |
Textbooks from Wikibooks | |
Learning resources from Wikiversity |
|
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「ロボット」 |
拡張検索 | 「robotic」「robot assisted surgery」 |
.