出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2017/01/18 01:49:02」(JST)
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(2012年1月) |
酸化還元反応(さんかかんげんはんのう)とは化学反応のうち、反応物から生成物が生ずる過程において、原子やイオンあるいは化合物間で電子の授受がある反応のことである。英語表記の Reduction / Oxidation から、レドックス (Redox) というかばん語も一般的に使われている。
酸化還元反応ではある物質の酸化プロセスと別の物質の還元プロセスが必ず並行して進行する。言い換えれば、一組の酸化される物質と還元される物質があってはじめて酸化還元反応が完結する。したがって、反応を考えている人の目的や立場の違いによって単に「酸化反応」あるいは「還元反応」と呼称されている反応はいずれも酸化還元反応と呼ぶべきものである。酸化還元反応式は、そのとき酸化される物質が電子を放出する反応と、還元される物質が電子を受け取る反応に分けて記述する、すなわち電子を含む2つの反応式に分割して記述することができる。このように電子を含んで式化したものを半反応式、半電池反応式、あるいは半電池式と呼ぶ。
狭義には酸化あるいは還元とは金属と酸素との化学反応を示す呼称であった。例えば、金属銅は空気中の酸素と徐々に反応し、表面は褐色の酸化銅(II) (CuO) に変化する。酸化銅(II)は高温で炭素と反応させると酸素が奪われて元の金属銅に変化する。前者を酸化といい後者を還元と呼ぶ。このとき、銅を中心に反応を見ているわけであるから、銅を酸化する物、すなわち酸素は酸化剤である。また、酸化銅(II)を還元して金属銅に戻す炭素は還元剤になる。一方で酸素分子の立場から見ると、前者の銅の酸化反応では、酸素分子は最終的に酸化銅(II)に含まれる酸化物イオンとなり還元されている。すなわち酸素の酸化数は0から-2に変化しており、このとき金属銅は酸素に対して還元剤として働いているとみなせる。また、後者の酸化銅(II)の還元反応では、炭素は最終的に二酸化炭素になり、炭素の酸化数は0から+4に酸化されている。すなわちこのとき酸化銅(II)は炭素に対して酸化剤として働いている。前者の反応は電子反応論に立つと、金属銅は電子を2個失い、同時に酸素(原子)は金属銅からその2個の電子を受け取ってオクテット則を満たす酸化物イオンとして安定化されている。したがって、酸化還元反応とは、単なる酸素原子の授受に限らず、次に述べるように、物質間の電子の授受を伴う反応であると広義に考えることができる。今日では、この広義の定義が広く用いられている。
酸素が関与しない反応で、酸化還元電位(平たく言えばイオン化傾向)の差によって自発的に金属が析出する反応がある。例えば以下の反応である。
これも酸化還元反応で、金属亜鉛は電子を失って亜鉛イオンとなり、銅イオンは電子を受け取って金属銅になっている。 したがって、酸素の授受のない反応にも酸化還元反応を拡大すると、その本質は電子の授受にあるということができる。 他にも、酸素も金属も関与しない反応で電子の授受を伴う反応が多数存在し、それら全てを含めて酸化還元反応という概念で理解されている。酸素や金属が関与する反応は、膨大な酸化還元反応のうちごく一部でしかない。
この様に酸化還元反応では、失う側の電子の数と受け取る側の電子の数は一致するので、化学当量の式で表すことができる。このとき、各元素に酸化数 (oxidation number) という概念を導入すると、当量関係の把握が容易になる。つまり、酸化還元反応の前後で反応系全体の酸化数の総和は変化しないので、各段階でどの様に電子が授受されるかを追跡しなくても、最初の状態と最後の状態で酸化数の変化を見れば、どの原子が酸化されて、どの原子が還元されたかが一目瞭然となる。それゆえ酸化数は酸化状態 (oxidation state) とも呼ばれる。
酸化数は次のルールに従って、決定される。
なお、量子化学的解釈は酸化数を参照のこと。
酸化還元反応において、電子が授受される方向は酸化剤として働く物質の酸化力、あるいは還元剤として働く物質の還元力の大小に従っている。そしてそれは相対的なものであって、酸化剤自身は反応後、還元された状態になるが、それに対してより強い酸化剤を作用させると酸化されてしまう。金属イオンの場合は、前述の酸化還元反応のように酸化力(あるいは還元力)の序列がイオン化傾向として定性的に知られている。但し、金属イオンに対する配位子の有無、溶液のpH(水素イオン指数)、合金形成の有無などによってイオン化傾向の序列は逆転することがあるため、イオン化傾向だけで酸化力や還元力の大小を判断するのは危険である。酸化還元反応を構成する二つの半反応式(多くの場合金属/金属イオンのペア)を、互いに隔離して空間的に異なる別々の場所で行わせ、その際に授受される電子を外部の回路に取り出すことができるように工夫したものが、電池である。このとき測定される電池の起電力は、それぞれの半反応式に含まれる酸化剤の酸化力(あるいは還元剤の還元力)の差を反映している。
以上の原理を元に導入された酸化還元の強度の尺度が酸化還元電位である。レドックス電位とも呼ばれる。
電池では、その正極と負極において、半反応式(半電池式)で表される1組の酸化還元反応が起こっている。それぞれの極を半電池と呼ぶことにすると、二つの半電池の間に発生するのが電池の起電力である。1対の酸化体と還元体(例えば銅イオンと金属銅)を含む半反応式の酸化還元電位は、ある基準となる半電池と組み合せたときの起電力として定義されている。水溶液系の場合、ある半反応式の酸化還元電位を求める際に基準とする、相手の半電池には
を使うことが取り決められている。ここで、水素イオンの活量は1、水素ガスの分圧は1気圧であり、このような半電池を標準水素電極(SHE; standard hydrogen electrodeもしくはNHE; normal hydrogen electrode)と呼んでいる。酸化還元反応系において、関与する物質の活量(あるいは分圧)がすべて1の場合の電極電位を標準電極電位と呼んでいる。活量が1でない場合の電極電位はネルンストの式から計算することができる。標準水素電極 (SHE) を基準に求めた種々の半反応式の酸化還元電位は、便覧等に表として掲載されている。
Redox (short for reduction–oxidation reaction) is a chemical reaction in which the oxidation states of atoms are changed. Any such reaction involves both a reduction process and a complementary oxidation process, two key concepts involved with electron transfer processes.[1] Redox reactions include all chemical reactions in which atoms have their oxidation state changed; in general, redox reactions involve the transfer of electrons between chemical species. The chemical species from which the electron is stripped is said to have been oxidized, while the chemical species to which the electron is added is said to have been reduced. It can be explained in simple terms:
As an example, during the combustion of wood, oxygen from the air is reduced, transferring electrons from the carbon.[2] Although oxidation reactions are commonly associated with the formation of oxides from oxygen molecules, oxygen is not necessarily included in such reactions, as other chemical species can serve the same function.[2]
The reaction can occur relatively slowly, as in the case of rust, or more quickly, as in the case of fire. There are simple redox processes, such as the oxidation of carbon to yield carbon dioxide (CO2) or the reduction of carbon by hydrogen to yield methane (CH4), and more complex processes such as the oxidation of glucose (C6H12O6) in the human body.
"Redox" is a combination of "reduction" and "oxidation".
The word oxidation originally implied reaction with oxygen to form an oxide, since dioxygen (O2 (g)) was historically the first recognized oxidizing agent. Later, the term was expanded to encompass oxygen-like substances that accomplished parallel chemical reactions. Ultimately, the meaning was generalized to include all processes involving loss of electrons.
The word reduction originally referred to the loss in weight upon heating a metallic ore such as a metal oxide to extract the metal. In other words, ore was "reduced" to metal. Antoine Lavoisier (1743–1794) showed that this loss of weight was due to the loss of oxygen as a gas. Later, scientists realized that the metal atom gains electrons in this process. The meaning of reduction then became generalized to include all processes involving gain of electrons. Even though "reduction" seems counter-intuitive when speaking of the gain of electrons, it might help to think of reduction as the loss of oxygen, which was its historical meaning. Since electrons are negatively charged, it is also helpful to think of this as reduction in electrical charge.
The electrochemist John Bockris has used the words electronation and deelectronation to describe reduction and oxidation processes respectively when they occur at electrodes.[3] These words are analogous to protonation and deprotonation, but they have not been widely adopted by chemists.
The term "hydrogenation" could be used instead of reduction, since hydrogen is the reducing agent in a large number of reactions, especially in organic chemistry and biochemistry. But, unlike oxidation, which has been generalized beyond its root element, hydrogenation has maintained its specific connection to reactions that add hydrogen to another substance (e.g., the hydrogenation of unsaturated fats into saturated fats, R−CH=CH−R + H2 → R−CH2−CH2−R). The word "redox" was first used in 1928.[4]
The processes of oxidation and reduction occur simultaneously and cannot happen independently of one another, similar to the acid–base reaction.[2] The oxidation alone and the reduction alone are each called a half-reaction, because two half-reactions always occur together to form a whole reaction. When writing half-reactions, the gained or lost electrons are typically included explicitly in order that the half-reaction be balanced with respect to electric charge.
Though sufficient for many purposes, these general descriptions are not precisely correct. Although oxidation and reduction properly refer to a change in oxidation state — the actual transfer of electrons may never occur. The oxidation state of an atom is the fictitious charge that an atom would have if all bonds between atoms of different elements were 100% ionic. Thus, oxidation is best defined as an increase in oxidation state, and reduction as a decrease in oxidation state. In practice, the transfer of electrons will always cause a change in oxidation state, but there are many reactions that are classed as "redox" even though no electron transfer occurs (such as those involving covalent bonds).
In redox processes, the reductant transfers electrons to the oxidant. Thus, in the reaction, the reductant or reducing agent loses electrons and is oxidized, and the oxidant or oxidizing agent gains electrons and is reduced. The pair of an oxidizing and reducing agent that are involved in a particular reaction is called a redox pair. A redox couple is a reducing species and its corresponding oxidizing form, e.g., Fe2+/Fe3+.
Substances that have the ability to oxidize other substances (cause them to lose electrons) are said to be oxidative or oxidizing and are known as oxidizing agents, oxidants, or oxidizers. That is, the oxidant (oxidizing agent) removes electrons from another substance, and is thus itself reduced. And, because it "accepts" electrons, the oxidizing agent is also called an electron acceptor. Oxygen is the quintessential oxidizer.
Oxidants are usually chemical substances with elements in high oxidation states (e.g., H
2O
2, MnO−
4, CrO
3, Cr
2O2−
7, OsO
4), or else highly electronegative elements (O2, F2, Cl2, Br2) that can gain extra electrons by oxidizing another substance.
Substances that have the ability to reduce other substances (cause them to gain electrons) are said to be reductive or reducing and are known as reducing agents, reductants, or reducers. The reductant (reducing agent) transfers electrons to another substance, and is thus itself oxidized. And, because it "donates" electrons, the reducing agent is also called an electron donor. Electron donors can also form charge transfer complexes with electron acceptors.
Reductants in chemistry are very diverse. Electropositive elemental metals, such as lithium, sodium, magnesium, iron, zinc, and aluminium, are good reducing agents. These metals donate or give away electrons readily. Hydride transfer reagents, such as NaBH4 and LiAlH4, are widely used in organic chemistry,[5][6] primarily in the reduction of carbonyl compounds to alcohols. Another method of reduction involves the use of hydrogen gas (H2) with a palladium, platinum, or nickel catalyst. These catalytic reductions are used primarily in the reduction of carbon-carbon double or triple bonds.
Each half-reaction has a standard electrode potential (E0
cell), which is equal to the potential difference or voltage at equilibrium under standard conditions of an electrochemical cell in which the cathode reaction is the half-reaction considered, and the anode is a standard hydrogen electrode where hydrogen is oxidized:
The electrode potential of each half-reaction is also known as its reduction potential E0
red, or potential when the half-reaction takes place at a cathode. The reduction potential is a measure of the tendency of the oxidizing agent to be reduced. Its value is zero for H+ + e− → 1⁄2 H2 by definition, positive for oxidizing agents stronger than H+ (e.g., +2.866 V for F2) and negative for oxidizing agents that are weaker than H+ (e.g., −0.763 V for Zn2+).[7]
For a redox reaction that takes place in a cell, the potential difference is:
However, the potential of the reaction at the anode was sometimes expressed as an oxidation potential:
The oxidation potential is a measure of the tendency of the reducing agent to be oxidized, but does not represent the physical potential at an electrode. With this notation, the cell voltage equation is written with a plus sign
A good example is the reaction between hydrogen and fluorine in which hydrogen is being oxidized and fluorine is being reduced:
We can write this overall reaction as two half-reactions:
the oxidation reaction:
and the reduction reaction:
Analyzing each half-reaction in isolation can often make the overall chemical process clearer. Because there is no net change in charge during a redox reaction, the number of electrons in excess in the oxidation reaction must equal to the number consumed by the reduction reaction (as shown above).
Elements, even in molecular form, always have an oxidation state of zero. In the first half-reaction, hydrogen is oxidized from an oxidation state of zero to an oxidation state of +1. In the second half-reaction, fluorine is reduced from an oxidation state of zero to an oxidation state of −1.
When adding the reactions together the electrons are canceled:
H 2 |
→ | 2 H+ + 2 e− |
F 2 + 2 e− |
→ | 2 F− |
|
||
H2 + F2 | → | 2 H+ + 2 F− |
And the ions combine to form hydrogen fluoride:
The overall reaction is:
In this type of reaction, a metal atom in a compound (or in a solution) is replaced by an atom of another metal. For example, copper is deposited when zinc metal is placed in a copper(II) sulfate solution:
Zn(s)+ CuSO4(aq) → ZnSO4(aq) + Cu(s)
In the above reaction, zinc metal displaces the copper(II) ion from copper sulfate solution and thus liberates free copper metal.
The ionic equation for this reaction is:
As two half-reactions, it is seen that the zinc is oxidized:
And the copper is reduced:
Cathodic protection is a technique used to control the corrosion of a metal surface by making it the cathode of an electrochemical cell. A simple method of protection connects protected metal to a more easily corroded "sacrificial anode" to act as the anode. The sacrificial metal instead of the protected metal, then, corrodes. A common application of cathodic protection is in galvanized steel, in which a sacrificial coating of zinc on steel parts protects them from rust.
The primary process of reducing ore at high temperature to produce metals is known as smelting.
Oxidation is used in a wide variety of industries such as in the production of cleaning products and oxidizing ammonia to produce nitric acid, which is used in most fertilizers.
Redox reactions are the foundation of electrochemical cells, which can generate electrical energy or support electrosynthesis.
The process of electroplating uses redox reactions to coat objects with a thin layer of a material, as in chrome-plated automotive parts, silver plating cutlery, and gold-plated jewelry.
The production of compact discs depends on a redox reaction, which coats the disc with a thin layer of metal film.[clarification needed]
Many important biological processes involve redox reactions.
Cellular respiration, for instance, is the oxidation of glucose (C6H12O6) to CO2 and the reduction of oxygen to water. The summary equation for cell respiration is:
The process of cell respiration also depends heavily on the reduction of NAD+ to NADH and the reverse reaction (the oxidation of NADH to NAD+). Photosynthesis and cellular respiration are complementary, but photosynthesis is not the reverse of the redox reaction in cell respiration:
Biological energy is frequently stored and released by means of redox reactions. Photosynthesis involves the reduction of carbon dioxide into sugars and the oxidation of water into molecular oxygen. The reverse reaction, respiration, oxidizes sugars to produce carbon dioxide and water. As intermediate steps, the reduced carbon compounds are used to reduce nicotinamide adenine dinucleotide (NAD+), which then contributes to the creation of a proton gradient, which drives the synthesis of adenosine triphosphate (ATP) and is maintained by the reduction of oxygen. In animal cells, mitochondria perform similar functions. See the Membrane potential article.
Free radical reactions are redox reactions that occur as a part of homeostasis and killing microorganisms, where an electron detaches from a molecule and then reattaches almost instantaneously. Free radicals are a part of redox molecules and can become harmful to the human body if they do not reattach to the redox molecule or an antioxidant. Unsatisfied free radicals can spur the mutation of cells they encounter and are, thus, causes of cancer.
The term redox state is often used to describe the balance of GSH/GSSG, NAD+/NADH and NADP+/NADPH in a biological system such as a cell or organ. The redox state is reflected in the balance of several sets of metabolites (e.g., lactate and pyruvate, beta-hydroxybutyrate, and acetoacetate), whose interconversion is dependent on these ratios. An abnormal redox state can develop in a variety of deleterious situations, such as hypoxia, shock, and sepsis. Redox mechanism also control some cellular processes. Redox proteins and their genes must be co-located for redox regulation according to the CoRR hypothesis for the function of DNA in mitochondria and chloroplasts.
A wide variety of aromatic compounds are enzymatically reduced to form free radicals that contain one more electron than their parent compounds. In general, the electron donor is any of a wide variety of flavoenzymes and their coenzymes. Once formed, these anion free radicals reduce molecular oxygen to superoxide, and regenerate the unchanged parent compound. The net reaction is the oxidation of the flavoenzyme's coenzymes and the reduction of molecular oxygen to form superoxide. This catalytic behavior has been described as futile cycle or redox cycling.
Examples of redox cycling-inducing molecules are the herbicide paraquat and other viologens and quinones such as menadione.[8]
In geology, redox is important to both the formation of minerals and the mobilization of minerals, and is also important in some depositional environments. In general, the redox state of most rocks can be seen in the color of the rock. The rock forms in oxidizing conditions, giving it a red color. It is then "bleached" to a green—or sometimes white—form when a reducing fluid passes through the rock. The reduced fluid can also carry uranium-bearing minerals. Famous examples of redox conditions affecting geological processes include uranium deposits and Moqui marbles.
Describing the overall electrochemical reaction for a redox process requires a balancing of the component half-reactions for oxidation and reduction. In general, for reactions in aqueous solution, this involves adding H+, OH−, H2O, and electrons to compensate for the oxidation changes.
In acidic media, H+ ions and water are added to half-reactions to balance the overall reaction.
For instance, when manganese(II) reacts with sodium bismuthate:
Unbalanced reaction: | Mn2+(aq) + NaBiO3(s) → Bi3+(aq) + MnO− 4 (aq) |
Oxidation: | 4 H2O(l) + Mn2+(aq) → MnO− 4(aq) + 8 H+(aq) + 5 e− |
Reduction: | 2 e− + 6 H+ + BiO− 3(s) → Bi3+(aq) + 3 H2O(l) |
The reaction is balanced by scaling the two half-cell reactions to involve the same number of electrons (multiplying the oxidation reaction by the number of electrons in the reduction step and vice versa):
Adding these two reactions eliminates the electrons terms and yields the balanced reaction:
In basic media, OH− ions and water are added to half reactions to balance the overall reaction.
For example, in the reaction between potassium permanganate and sodium sulfite:
Unbalanced reaction: | KMnO4 + Na2SO3 + H2O → MnO2 + Na2SO4 + KOH |
Reduction: | 3 e− + 2 H2O + MnO− 4 → MnO2 + 4 OH− |
Oxidation: | 2 OH− + SO2− 3 → SO2− |
Balancing the number of electrons in the two half-cell reactions gives:
Adding these two half-cell reactions together gives the balanced equation:
The key terms involved in redox are often confusing to students.[9][10] For example, an element that is oxidized loses electrons; however, that element is referred to as the reducing agent. Likewise, an element that is reduced gains electrons and is referred to as the oxidizing agent.[11] Acronyms or mnemonics are commonly used[12] to help remember the terminology:
Notes
Students often are confused when associating reduction with the gain of electrons.
Bibliography
Wikiquote has quotations related to: Redox |
Wikimedia Commons has media related to Redox reactions. |
Authority control |
|
---|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「酸化還元」「oxidation-reduction」 |
拡張検索 | 「NADPH-ferredoxin reductase」「ferredoxin-thioredoxin reductase」 |
関連記事 | 「red」 |
.