A perfluorinated compound (PFC) is an organofluorine compound containing only carbon-fluorine bonds (no C-H bonds) and C-C bonds but also other heteroatoms. PFCs have properties that represent a blend of fluorocarbons (containing only C-F and C-C bonds) and the parent functionalized organic species. For example, perfluorooctanoic acid functions as a carboxylic acid but with strongly altered surfactant and hydrophobic characteristics.[1]
Contents
- 1 Applications
- 2 Classes of PFCs by functional group
- 2.1 Perfluorinated alkyl and aryl halides
- 2.2 Fluorochloroalkenes
- 2.3 Perfluoroethers and epoxides
- 2.4 Perfluoroalcohols
- 2.5 Perfluoroamines
- 2.6 Perfluoroketones
- 2.7 Perfluorocarboxylic acids
- 2.8 Perfluoronitriles and isonitriles
- 2.9 Perfluorosulfonic acids and related derivatives
- 2.10 Perfluorinated aryl borates
- 3 Environmental and health concerns
- 4 Testing programs
- 5 See also
- 6 References
Applications
|
This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (August 2015) |
Many perfluorinated compounds are useful. For example, fluorosurfactants powerfully reduce surface tension by concentrating at the liquid-air interface due to the lipophobicity of fluorocarbons, due to the polar functional group added to the fluorocarbon chain. Elements commonly incorporated into fluorocarbon based compounds include oxygen, such as in the carboxyl group present in some flourosurfactants, and chlorine, in chlorofluorocarbons, which were formerly used as refrigerants, and are presently implicated in ozone degradation). Fluorosurfactants are widely used in the production of teflon and related fluorinated polymers. They have also been used to confer hydrophobic, stain-resisting properties to fabrics and fire-fighting foam.
Classes of PFCs by functional group
Representative members of this large family of compounds are listed below. Also numerous are compounds that contain many fluoride centers but also some hydrogen, e.g., trifluoroethanol.
Perfluorinated alkyl and aryl halides
-
- Trifluoroiodomethane, an alkylating agent
- Pentafluoroethyl iodide, an alkylating agent
- Perfluorooctyl bromide (perflubron) is a contrast medium for magnetic resonance imaging, computer tomography and sonography. It has also been used in liquid breathing.
- Dichlorodifluoromethane, refrigerant
Fluorochloroalkenes
-
- Chlorotrifluoroethylene, monomer
- Dichlorodifluoroethylene (three isomers), monomers
Perfluoroethers and epoxides
Main article: Fluoroether
-
- hexafluoropropylene oxide , precursor to perfluoromethyl vinyl ether (CF2=CFOCF3), a useful monomer
- Krytox, perfluorinated polyether used in special greases
Perfluoroalcohols
-
- Pentafluorophenol, a moderately strong acid
Perfluorinated alcohols are unstable with respect to dehydrofluorination.
Perfluoroamines
-
- Perfluorotripentylamine (and related derivatives) are found in Fluorinert, electronic coolants.
Perfluoroketones
-
- Hexafluoroacetone, building block in organofluorine chemistry.
Perfluorocarboxylic acids
Main article: Perfluorinated carboxylic acid
-
- Trifluoroacetic acid, a moderately strong acid useful in organic chemistry
- Heptafluorobutyric acid, a moderately strong acid that is useful in organic and analytical chemistry
- Pentafluorobenzoic acid, a moderately strong acid of interest in research community
- perfluorooctanoic acid (PFOA), surfactant used to make fluoropolymers such as Teflon
- perfluorononanoic acid (PFNA), surfactant in the emulsion polymerization of fluoropolymers, like PFOA.
Perfluoronitriles and isonitriles
-
- Trifluoromethylisocyanide, the simplest perfluorinated isonitrile.
- Trifluoromethylacetonitrile, the simplest perfluorinated nitrile
Perfluorosulfonic acids and related derivatives
-
- Triflic acid, a useful strong acid
- perfluorobutanesulfonic acid (PFBS) used as a replacement for PFOS in 3M's reformulated Scotchgard.
- perfluorooctanesulfonyl fluoride (POSF), precursor to PFOS-based compounds.
- perfluorooctanesulfonamide (PFOSA), used in 3M's Scotchgard formulation.
- perfluorooctanesulfonic acid (PFOS,) used in the semiconductor industry, 3M's former Scotchgard formulation, and 3M's former fire-fighting foam mixture.
Perfluorinated aryl borates
-
- Na[B(C6F5)4], salt of a weakly coordinating anion.
Environmental and health concerns
Despite the presence of some natural fluorocarbons such as tetrafluoromethane, which has been reported in rocks,[2] man-made fluorocarbons are potent greenhouse gases. The fluorocarbons PFOA (perfluorooctanoic acid) and PFOS (perfluorooctane sulfonate) have both been investigated by the EU and the United States Environmental Protection Agency (EPA) which regards them being harmful to the environment.[3]
Fluorocarbons tend to bioaccumulate, since they are extremely stable and can be stored in the bodies of both humans and animals. Examples include PFOA and PFOS, frequently present in water resistant textiles and sprays conferring water resistant properties to textiles and fire-fighting foam.[3] Data from animal studies of PFOA indicate that it can cause several types of tumors and neonatal death and may have toxic effects on the immune, liver, and endocrine systems. As of 2010[update] data on the human health effects of PFOA were sparse.[4]
Testing programs
USA
Since 2015, the Air Force has been testing 82 former and active military installations nationwide for PFCs, contained in fire fighting foam.[5] In 2015, PFCs were found in groundwater at Naval Air Station Brunswick, Maine and Grissom Air Reserve Base, Indiana, and in well water at Pease Air Force Base#Environmental issues, New Hampshire, where 500 people including children had blood tests as part of a biomonitoring plan through the state Department of Health and Human Services.
See also
- Fluorosurfactants
- Fluorocarbons
References
- ^ Günter Siegemund, Werner Schwertfeger, Andrew Feiring, Bruce Smart, Fred Behr, Herward Vogel, Blaine McKusick "Fluorine Compounds, Organic" Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2002. doi:10.1002/14356007.a11_349
- ^ Murphy CD, Schaffrath C, O'Hagan D.: "Fluorinated natural products: the biosynthesis of fluoroacetate and 4-fluorothreonine in Streptomyces cattleya" Chemosphere. 2003 Jul;52(2):455-61.
- ^ a b US Environmental Protection Agency. "FAQ". Perfluorooctanoic Acid (PFOA) and Fluorinated Telomers. Retrieved 11 May 2011.
- ^ Steenland, Kyle; Fletcher, Tony; Savitz, David A. (2010). "Epidemiologic Evidence on the Health Effects of Perfluorooctanoic Acid (PFOA)". Environmental Health Perspectives 118 (8): 1100–8. doi:10.1289/ehp.0901827. PMC 2920088. PMID 20423814. Retrieved 2011-05-11.
- ^ Associated Press (19 September 2015). "Grissom officials: Well tests show no chemical pollution". LIN Television Corporation. Retrieved 19 September 2015.
|
Wikimedia Commons has media related to Perfluorinated compounds. |
Health issues of plastics and Polyhalogenated compounds (PHCs)
|
|
Plasticizers: Phthalates |
- DIBP
- DBP
- BBP (BBzP)
- DIHP
- DEHP (DOP)
- DIDP
- DINP
|
|
Miscellaneous plasticizers |
- Organophosphates
- Adipates (DEHA
- DOA)
|
|
Monomers |
- Bisphenol A (BPA, in Polycarbonates)
- Vinyl chloride (in PVC)
|
|
Miscellaneous additives incl. PHCs |
- PBDEs
- PCBs
- Organotins
- PFCs
|
|
Health issues |
- Teratogen
- Carcinogen
- Endocrine disruptor
- Diabetes
- Obesity
|
|
Miscellanea |
- PVC
- Plastic recycling
- Plastic bottle
- Vinyl chloride
- Dioxins
- Polystyrene
- Foam food container
- PTFE (Teflon)
- California Proposition 65
- List of environmental health hazards
- Persistent organic pollutant
- European REACH regulation
- Japan Toxic Substances Law
- Toxic Substances Control Act
|
|